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Abstract
Tracking	the	state	of	biodiversity	over	time	is	critical	to	successful	conservation,	but	
conventional	monitoring	schemes	tend	to	be	insufficient	to	adequately	quantify	how	
species'	abundances	and	distributions	are	changing.	One	solution	to	this	 issue	 is	to	
leverage	data	generated	by	citizen	scientists,	who	collect	vast	quantities	of	data	at	
temporal	and	spatial	scales	that	cannot	be	matched	by	most	traditional	monitoring	
methods.	However,	the	quality	of	citizen	science	data	can	vary	greatly.	In	this	paper,	
we	develop	three	metrics	(inventory	completeness,	range	completeness,	spatial	bias)	
to	assess	the	adequacy	of	spatial	observation	data.	We	explore	the	adequacy	of	citi-
zen	science	data	at	the	species	level	for	Australia's	terrestrial	native	birds	and	then	
model	these	metrics	against	a	suite	of	seven	species	traits	(threat	status,	taxonomic	
uniqueness,	body	mass,	average	count,	range	size,	species	density,	and	human	popu-
lation	density)	to	 identify	predictors	of	data	adequacy.	We	find	that	citizen	science	
data	adequacy	for	Australian	birds	is	increasing	across	two	of	our	metrics	(inventory	
completeness	and	range	completeness),	but	not	spatial	bias,	which	has	worsened	over	
time.	Relationships	between	 the	 three	metrics	 and	 seven	 traits	we	modelled	were	
variable,	with	only	two	traits	having	consistently	significant	relationships	across	the	
three	metrics.	Our	results	suggest	 that	although	citizen	science	data	adequacy	has	
generally	 increased	over	time,	there	are	still	gaps	 in	the	spatial	adequacy	of	citizen	
science	for	monitoring	many	Australian	birds.	Despite	these	gaps,	citizen	science	can	
play	an	important	role	in	biodiversity	monitoring	by	providing	valuable	baseline	data	
that	may	be	supplemented	by	information	collected	through	other	methods.	We	be-
lieve	the	metrics	presented	here	constitute	an	easily	applied	approach	to	assessing	
the	utility	of	citizen	science	datasets	for	biodiversity	analyses,	allowing	researchers	
to	identify	and	prioritise	regions	or	species	with	lower	data	adequacy	that	will	benefit	
most	from	targeted	monitoring	efforts.
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1  |  INTRODUC TION

Biodiversity	 monitoring	 is	 an	 essential	 component	 of	 conserva-
tion	(Lindenmayer	et	al.,	2012).	Data	collection	is	the	foundation	
of	successful	monitoring,	and	when	effectively	collected	and	an-
alysed,	occurrence	data	 can	 inform	 the	 status	and	 trend	of	 spe-
cies,	 allowing	 conservation	 practitioners	 and	 policy	 makers	 to	
identify	taxa	most	in	need	of	targeted	management	interventions.	
However,	 resources	 available	 to	 formal	monitoring	 schemes	 are	
typically	very	limited	(Kuebbing	et	al.,	2018),	meaning	that	the	ma-
jority	of	species	are	not	well	monitored	across	their	entire	ranges,	
and	in	many	cases,	the	limits	of	their	range	may	not	be	fully	known	
(Whittaker	et	al.,	2005).	Even	for	relatively	well-	studied	taxa	such	
as	birds,	or	 regions	such	as	North	America,	Europe,	or	Australia,	
these	issues	are	pervasive	(Backstrom	et	al.,	2023).	In	light	of	this,	
a	 key	 challenge	 facing	 biodiversity	 and	 conservation	 science	 is	
prioritising	 species	 and	 regions	 in	 need	of	 additional	monitoring	
resources	(Wilson	et	al.,	2015).

One	 increasingly	 popular	 approach	 to	 biodiversity	 monitoring	
is	to	leverage	data	generated	by	volunteers	through	citizen	science	
programmes.	Citizen	science	has	 led	to	numerous	advances	 in	un-
derstanding	 species'	 populations	 in	 space	 and	 time	 (e.g.	 Johnston	
et	al.,	2020;	Van	Strien	et	al.,	2013),	and	many	visions	for	biodiver-
sity	 monitoring	 that	 take	 advantage	 of	 citizen	 science	 have	 been	
promoted	at	local,	regional	and	global	scales	(Chandler	et	al.,	2017; 
Pocock	et	al.,	2018).	Despite	this	promise,	there	are	several	obsta-
cles	 limiting	 the	 widespread	 adoption	 of	 citizen	 science	 (Burgess	
et	al.,	2017),	including	real	or	perceived	data	quality	issues	leading	to	
a	lack	of	trust	by	analysts	and	policymakers	(Binley	&	Bennett,	2023),	
and	statistical	challenges	during	the	analysis	of	citizen	science	data	
(Johnston	 et	 al.,	 2023).	 In	 most	 circumstances,	 overcoming	 these	
issues	will	 require	 some	 degree	 of	 data	 integration—that	 is,	 using	
broad-	scale	citizen	science	data	in	combination	with	localised	high-	
quality	data	collected	by	specialists.	To	achieve	this	integration,	un-
derstanding	the	adequacy	of	citizen	science	datasets	in	this	context	
is	an	important	first	step.

In	 this	 paper,	we	provide	methods	 to	 assess	 data	 adequacy	 in	
two	different	contexts:	completeness	(two	metrics)	and	bias.	For	the	
most	part,	these	two	contexts	have	been	well-	studied	across	various	
citizen	science	datasets	(Deacon	et	al.,	2023;	Kelling	et	al.,	2019;	La	
Sorte	&	Somveille,	2020;	Shirey	et	al.,	2021),	but	to	date,	few	studies	
have	quantified	data	adequacy	at	a	per-	species	level—instead	tend-
ing	to	explore	them	across	spatial	and	temporal	scales,	identifying,	
for	example,	poorly	sampled	regions	or	temporal	periods	(Callaghan	
et	al.,	2022;	Girardello	et	al.,	2019),	or	exploring	adequacy	at	higher	
taxonomic	levels	(Di	Cecco	et	al.,	2021;	Mesaglio	et	al.,	2023).	We	
extend	this	body	of	 literature	by	quantifying	adequacy	at	the	spe-
cies	 level	 for	 Australia's	 terrestrial	 native	 birds.	 The	 advantage	 of	

the	 species-	level	 approach	we	 present	 here	 is	 that	 adequacy	 can	
be	directly	related	to	the	monitoring	and	conservation	of	individual	
species,	allowing	for	frameworks	which	can	(1)	identify	species	for	
which	currently	available	data	may	be	‘ready	to	go’	and	can	be	used	
as-	is	for	modelling	and	tracking	of	populations	and	(2)	prioritise	spe-
cies	where	investment	in	a	‘boots	on	the	ground’	approach	may	be	
needed	to	fill	knowledge	gaps	and	establish	a	more	complete	picture	
of	that	species'	conservation	status	(Backstrom	et	al.,	2023).

We	provide	three	metrics	that	can	be	used	to	assess	data	ade-
quacy	at	a	per-	species	level	in	citizen	science	datasets.	We	then	use	
data	from	two	major	Australian	citizen	science	projects	to	calculate	
these	metrics	for	all	native	Australian	land	birds.	Considering	the	re-
sults	of	 these	analyses,	we	assess	 the	value	of	each	metric	 in	 the	
context	 of	 current	 knowledge	 on	 the	 distribution,	 abundance	 and	
status	of	Australia's	birds	and	how	each	of	the	two	Australian	citizen	
science	projects	compare.	We	then	model	 these	metrics	against	a	
suite	of	seven	species	traits	to	identify	any	patterns	and	predictors	
of	data	adequacy	that	may	permit	a	better	understanding	of	data	ad-
equacy.	Finally,	we	identify	species	and	traits	for	which	these	anal-
yses	 produced	 unexpected	 results,	 consider	 the	 possible	 reasons	
for	 these	results	and	discuss	whether	 these	metrics	could	provide	
important	novel	information	that	improves	our	ability	to	assess	the	
distribution,	abundance	and	conservation	status	of	species.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

We	used	 species	 occurrence	 data	 from	 two	major	 citizen	 science	
programmes,	eBird	 (Cornell	Lab	of	Ornithology,	2022)	and	Birdata	
(Birdlife	 Australia,	 2023).	 These	 programmes	 are	 the	 two	 largest	
(by	volume)	ecological	citizen	science	datasets	in	Australia	and	col-
lectively	make	 up	 c.	 75%	of	 all	 bird	 records	 in	 the	Atlas	 of	 Living	
Australia	 (https://	www.	ala.	org.	au).	 The	 two	 platforms	 are	 similar	
in	that	they	are	both	semi-	structured	(Kelling	et	al.,	2019),	allowing	
users	flexibility	in	when,	where	and	how	they	survey	birds.	However,	
Birdata	tends	to	offer	slightly	more	direction	to	users,	in	particular	
through	a	number	of	more	structured	protocols	 (e.g.	2-	ha,	20-	min	
surveys)	and	broad-	scale	programmes	with	more	specific	data	col-
lection	aims	(e.g.	Powerful	Owl	Project,	Beach	Nesting	Birds	Project,	
New	Atlas	of	Australian	Birds).	In	contrast,	eBird	typically	offers	very	
little	 specific	direction	 to	users	beyond	a	small	number	of	general	
suggestions	 (e.g.	 lists	 should	 be	 under	 5 miles/8 km	 in	 length	 and	
3 h	in	duration).	The	commonalities	in	structure	between	eBird	and	
Birdata	allow	for	data	from	the	two	platforms	to	be	readily	combined	
in	analyses	such	as	these,	although	analysts	ought	to	be	mindful	of	
the	differences	between	the	two,	as	we	show	here.

T A X O N O M Y  C L A S S I F I C A T I O N
Biodiversity	ecology,	Conservation	ecology
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We	 filtered	 the	 two	 datasets	 to	 include	 only	 records	 from	
mainland	 Australia	 and	 offshore	 territories;	 marine	 species	 were	
excluded.	 Using	 the	 Working	 List	 of	 Australian	 Birds	 v2	 (Birdlife	
Australia,	2017)	as	a	reference,	we	excluded	occurrences	of	species	
classified	 as	 exotic,	 vagrant	 or	 extinct,	 and	 filtered	 out	 data	 from	
non-	complete	 checklists	 (i.e.	 incidental	 observations).	 Duplicate	
copies	 of	 shared	 checklists	 (i.e.	 lists	 from	 people	 who	were	 bird-
watching	 together)	were	 removed	 from	 the	eBird	dataset.	We	did	
not	 filter	by	other	effort	variables	 (e.g.	duration,	distance).	We	 in-
cluded	records	from	all	years	(historical	sightings	were	included),	and	
we	did	 not	 conduct	 any	 additional	 error	 checking	 beyond	what	 is	
already	done	by	the	two	programmes.	We	used	species	distribution	
data	from	two	sources:	Birdlife	International	(BirdLife	International	
&	Handbook	of	the	Birds	of	the	World,	2020)	and	the	Australian	Bird	
Guide	(Menkhorst	et	al.,	2017).	These	represent	the	most	up-	to-	date	
spatial	datasets	of	Australian	bird	distributions.	Species	distributions	
were	combined	across	the	two	sources,	clipped	to	mainland	Australia	
and	offshore	 territories,	 then	 filtered	 to	only	 include	extant,	 non-	
vagrant	 ranges.	Occurrences	of	 species	outside	 their	mapped	dis-
tributions	 were	 assumed	 to	 be	 vagrants	 and	 were	 removed	 from	
the	 combined	 occurrence	 dataset.	 We	 used	 the	 Working	 List	 of	
Australian	Birds	v2	(Birdlife	Australia,	2017)	as	our	baseline	taxon-
omy,	 but	 as	 each	 of	 our	 four	 datasets	 uses	 a	 different	 taxonomic	
list,	we	had	to	manually	resolve	conflicting	taxonomic	arrangements,	
generally	by	combining	ambiguous	taxa	at	the	lowest	possible	level.	

The	combined	occurrence	dataset	contained	approximately	42 mil-
lion	observations	referring	to	598	species	(Figure 1,	panel	a)	and	the	
combined	species	distribution	maps	covered	all	598	species	 in	the	
occurrence	data	 (Figure 1,	panel	b).	To	 facilitate	 the	calculation	of	
our	data	adequacy	metrics,	we	simplified	all	datasets	to	a	1-	degree	
grid	 of	 the	Australian	 region	 (Figure 1,	 panel	 c).	 This	 spatial	 scale	
was	chosen	as	a	balance	between	being	fine	enough	to	permit	spa-
tially	 relevant	 conservation	 and	 management	 conclusions,	 while	
being	coarse	enough	to	allow	for	sufficient	data	aggregation	and	for	
processing	to	complete	in	a	manageable	time	frame.	We	tested	the	
effect	of	changing	this	scale	 (at	2.0,	1.0,	0.5	and	0.2	degrees)	and	
observed	similar	relative	trends	across	metrics	(Figures S1–S4).

2.2  |  Adequacy metrics

We	present	 three	adequacy	metrics,	aimed	at	answering	different	
questions	(Figure 1,	panel	d).

2.2.1  | Mean	inventory	completeness

Mean	inventory	completeness	(MIC)	answers	the	question	‘how	ad-
equately	surveyed	is	this	species'	range’?.	 It	 is	defined	as	the	aver-
age	(mean)	inventory	completeness	of	all	grid	cells	across	a	species'	

F I G U R E  1 Methods	framework	used	
in	this	analysis.	Occurrence	data	from	two	
major	citizen	science	programmes,	and	
distribution	data	from	two	sources,	were	
combined	to	produce	three	metrics	of	
data	adequacy.	The	relationships	of	seven	
species	traits	with	each	of	these	metrics	
were	then	modelled.
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range,	where	 inventory	 completeness	 (in	 this	 instance)	 is	 the	pro-
portion	of	the	observed	diversity	 (the	number	of	species	recorded)	
relative	to	the	expected	diversity	(the	number	of	species	mapped)	in	
a	given	cell.	Cells	with	sufficient	sampling	effort	to	detect	the	entire	
assemblage	of	species	expected	to	be	present	will	have	high	inven-
tory	completeness	(values	close	to	1),	and	therefore	species	whose	
ranges	overlap	with	 these	well-	surveyed	cells	will	have	high	mean	
inventory	completeness	scores,	suggestive	of	a	species	whose	range	
has	been	adequately	surveyed.

2.2.2  |  Total	range	completeness

Total	range	completeness	(TRC)	answers	the	question	‘how	well	sur-
veyed	is	this	species	across	 its	range’?.	 It	 is	defined	as	the	propor-
tion	of	a	species'	mapped	range	for	which	there	are	records	of	the	
species	at	the	chosen	grid	cell	grain	(in	our	case,	1	degree).	Species	
with	high	total	range	completeness	(values	close	to	1)	have	records	
across	much	of	 their	 range,	 indicating	 that	 the	species	 is	well	 sur-
veyed	across	its	range,	and	likely	allowing	for	more	robust	modelling	
of	distribution	and	abundance.

2.2.3  |  Checklist	spatial	bias

Checklist	spatial	bias	(CSB)	answers	the	question	‘how	biased	are	the	
data	we	have	for	this	species’?.	It	is	defined	as	the	spatial	sampling	bias	
of	checklists	in	each	cell	across	a	species'	range,	following	the	methods	
developed	by	Backstrom	(2022).	Here,	bias	is	the	proportional	differ-
ence	between	the	observed	distribution	of	sampling	effort	(in	this	in-
stance,	number	of	checklists	in	each	grid	cell	across	a	species'	range)	
and	an	expected	(null)	distribution	(i.e.	uniform	spatial	distribution	of	
sampling	effort	across	a	species'	range);	more	details	are	provided	in	
Backstrom	(2022).	In	this	paper,	we	present	spatial	bias	as	the	inverse	
of	the	bias	of	Backstrom	(2022),	that	is	1 − H,	so	as	to	keep	the	same	di-
rectional	coding	as	the	other	two	measures	(higher	is	better).	As	strong	
sampling	bias	 can	 impede	modelling	 (Johnston	et	 al.,	2020),	 species	
with	weaker	checklist	spatial	bias	(i.e.	higher	scores)	are	likely	better	
suited	to	a	‘ready-	to-	go’	approach,	whereas	species	with	stronger	bias	
(i.e.	lower	scores)	may	require	more	nuanced	modelling,	or	aggressive	
data	filtering	(e.g.	Johnston	et	al.,	2020).

2.3  |  Analysis

We	analysed	the	above	three	data	adequacy	metrics	across	all	598	
species.	We	 analysed	 the	 two	 datasets	 (eBird	 and	Birdata)	 both	
independently	and	combined.	We	explored	(a)	values	of	the	three	
data	adequacy	metrics	for	the	entire	dataset;	(b)	cumulative	(year-	
on-	year)	changes	in	the	values	of	each	of	the	three	metrics	for	the	
period	1980–2022	(i.e.	how	these	metrics	change	when	more	data	
are	added	to	the	two	datasets	each	year)	and	(c)	annual	(year-	by-	
year)	changes	in	each	of	the	three	metrics	across	the	same	period.

2.4  |  Modelling

To	 further	 explore	 the	 factors	 associated	with	 data	 adequacy,	we	
developed	a	set	of	linear	models	to	identify	traits	that	may	predict	
various	 adequacy	metrics	 (Figure 1,	 panel	 e).	We	 identified	 seven	
possible	traits	(Table 1)	and	constructed	a	simple	linear	model	fit	to	
each	of	the	three	adequacy	metrics	as	follows	(N = 3	models):

where �0	is	the	intercept	of	data	adequacy	(one	of	the	three	metrics	
defined	above,	 for	 the	entire	combined	dataset),	�1	 is	 the	partial	 re-
gression	slope	of	data	adequacy	on	 the	species'	 International	Union	
for	Conservation	of	Nature	(IUCN)	threat	status,	as	measured	by	the	
Action	Plan	for	Australian	Birds	2020	(Garnett	&	Baker,	2021),	�2 is the 
partial	 regression	slope	of	data	adequacy	on	the	species'	 taxonomic	
uniqueness	(a	measure	of	how	evolutionarily	distinct	a	species	is),	as	
defined	by	Szabo	et	al.	(2012)	and	presented	in	Garnett	et	al.	(2015),	
�3	is	the	partial	regression	slope	of	data	adequacy	on	the	species'	av-
erage	body	mass,	as	presented	in	Garnett	et	al.	(2015),	�4	is	the	partial	
regression	slope	of	data	adequacy	on	the	average	count	of	the	species,	
calculated	directly	from	the	combined	observation	dataset	used	in	the	
analysis,	�5	is	the	partial	regression	slope	of	data	adequacy	on	the	spe-
cies'	range	size,	calculated	directly	from	the	combined	range	maps	used	
in	the	analysis,	�6	is	the	partial	regression	slope	of	data	adequacy	on	
the	species'	modelled	density,	as	presented	in	Santini	et	al.	(2023),	�7 
is	the	partial	regression	slope	of	data	adequacy	on	the	average	human	
population	density	(people/km2)	across	the	species'	range,	calculated	
using	data	from	Australian	Bureau	of	Statistics	(2023)	and	� is the re-
sidual	variation	in	data	adequacy	for	individual	species	in	the	dataset.

The	six	continuous	predictor	variables	were	all	log-	transformed	
to	satisfy	assumptions	of	normality	and	linearity.	Model	assumptions	
were	checked	using	the	package	performance	(Lüdecke	et	al.,	2021)	
and	 all	modelling	 and	 analysis	were	 conducted	 in	R	4.2.0	 (R	Core	
Team,	2022).

3  |  RESULTS

3.1  |  Analysis

3.1.1  | Mean	inventory	completeness

Mean	 inventory	 completeness	 values	 ranged	 between	 0.61	 and	
0.96	 for	 the	 entire	 combined	 dataset	 (mean	 0.78,	 median	 0.77;	
Table 2,	Figure 2).	The	species	with	the	lowest	MIC	values	were	all	
scarce,	desert-	dwelling	species	with	fairly	 large	ranges	 (e.g.	Dusky	
Grasswren	 Amytornis purnelli,	 Princess	 Parrot	 Polytelis alexandrae,	
Grey	Honeyeater	Conopophila whitei),	whereas	those	with	the	high-
est	 scores	were	 all	 range-	restricted	 island	 endemics	 (the	 highest-	
scoring	non-	island	species	was	the	Wet	Tropics	endemic	Chowchilla	

Adequacy = �0+�1× threat status+�2× taxonomic uniqueness

+�3×body mass+�4×average count+�5× range size

+�6×species density+�7×human density+�
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Orthonyx spaldingii	at	0.93).	MIC	values	tended	to	be	higher	 in	the	
Birdata	dataset	than	the	eBird	dataset	(Figure 2),	although	at	present	
growth	rates	this	is	likely	to	change	by	c. 2025 (Figure 3).

Annual	MIC	values	for	the	combined	dataset	ranged	between	an	
average	of	0.10	in	1990	and	0.46	in	2000	(Figure 4).	Prior	to	1998	
and	after	2011,	 the	eBird	dataset	had	higher	average	MIC	values,	
whereas	between	these	years	the	Birdata	dataset	dominated,	par-
ticularly	between	1999	and	2001.

3.1.2  |  Total	range	completeness

Total	 range	 completeness	 values	 ranged	 between	 0.01	 and	 1.00	
for	the	entire	combined	dataset	 (mean	0.71,	median	0.74;	Table 2,	
Figure 2).	 The	 species	with	 the	 lowest	TRC	values	were	 all	 either	
very	rare,	very	cryptic	or	both	(e.g.	Night	Parrot	Pezoporus occiden-
talis,	Buff-	breasted	Buttonquail	Turnix olivii,	Princess	Parrot	Polytelis 
alexandrae),	whereas	 those	with	 the	highest	 scores	were	primarily	

island	 endemics	 (two	 range-	restricted	 mainland	 species,	 Eungella	
Honeyeater	Bolemoreus hindwoodi	 and	Yellow-	spotted	Honeyeater	
Meliphaga notata,	also	had	TRC	values	of	1).	TRC	values	tended	to	be	
higher	in	the	Birdata	dataset	than	in	the	eBird	dataset,	although	this	
is	likely	to	change	by	c.	2025	with	present	growth	rates	(Figure 3).

Annual	TRC	values	for	the	combined	dataset	ranged	between	an	
average	of	0.09	in	1990	and	0.42	in	2022	(Figure 4).	Prior	to	1998	
and	after	2011,	 the	eBird	dataset	had	higher	 average	TRC	values,	
whereas	between	these	years	the	Birdata	dataset	dominated,	par-
ticularly	between	1999	and	2001.

3.1.3  |  Checklist	spatial	bias

Checklist	 spatial	 bias	 values	 ranged	 between	 0.21	 and	 1.00	 for	
the	combined	dataset	(mean	0.37,	median	0.33;	Table 2,	Figure 2).	
The	species	with	the	lowest	CSB	values	(i.e.	strongest	spatial	bias)	
shared	 few	 obvious	 traits,	 but	 were	 often	 wide-	ranging	 species	

TA B L E  1 The	seven	traits	used	in	modelling	of	the	three	data	adequacy	metrics.

Trait Definition Prediction Reference

Threat	status IUCN	Red	List	category	
(IUCN,	2001).	Further	details	
in	Garnett	and	Baker	(2021)

Higher	threat	status	is	associated	with	poorer	data	adequacy	
across	all	metrics.	Threatened	species	typically	have	smaller	
population	sizes	(Mace	et	al.,	2008),	making	them	harder	to	
find	across	their	range,	particularly	for	threatened	species	
with	remote	ranges

Action	plan	for	
Australian	birds	
2020	(Garnett	&	
Baker,	2021)

Taxonomic	
uniqueness

A	constructed	measure	of	taxon	
uniqueness.	Further	details	in	
Garnett	et	al.	(2015)

Higher	taxonomic	uniqueness	is	associated	with	better	data	
adequacy	across	all	metrics.	Taxonomically	unique	species	
may	be	favoured	by	birdwatchers	(Steven	et	al.,	2017),	
resulting	in	distinctive	species	being	disproportionately	
sought	out	and	detected	across	their	ranges

Defined	by	Szabo	
et	al.	(2012)	
and	presented	
in	Garnett	
et	al.	(2015)

Average	body	
mass

Mean	body	mass	(in	grams)	of	
all	birds	measured.	Further	
details	in	Garnett	et	al.	(2015)

Higher	average	body	mass	is	associated	with	better	data	
adequacy	across	all	metrics.	Larger	birds	are	over-	
represented	in	unstructured	citizen	science	data	(Callaghan,	
Poore,	et	al.,	2021);	this	may	also	manifest	in	semi-	structured	
datasets	as	better	data	adequacy

Garnett	et	al.	(2015)

Average	count Mean	count	(where	reported)	of	
observations	of	the	species	
in	the	combined	dataset

Higher	average	count	is	associated	with	better	data	adequacy	
across	all	metrics.	Species	that	tend	to	occur	in	high	numbers	
should	be	more	readily	detected	across	their	ranges,	resulting	
in	better	data	adequacy	scores

Calculated	directly	
from	the	
combined	
observation	
dataset

Range	size Area	of	combined,	gridded	and	
clipped	distributions	of	the	
species	in	the	dataset

Larger	range	size	is	associated	with	poorer	data	adequacy	across	
all	metrics.	Larger	ranges	are	inherently	more	difficult	to	
comprehensively	survey	(Nandintsetseg	et	al.,	2019)	and	are	
more	likely	to	have	high	spatial	sampling	variation	across	the	
range

Calculated	directly	
from	the	
combined	
distribution	
dataset

Species	density Modelled	species	density	across	
its	whole	range.	Further	
details	in	Santini	et	al.	(2023)

Higher	species	density	is	associated	with	better	data	adequacy	
across	all	metrics.	Less	scarce	(higher	density)	species	should	
be	more	readily	detected	across	their	ranges,	resulting	in	
better	data	adequacy	scores

Santini	et	al.	(2023)

Human	density Mean	human	density	across	the	
species'	range

Higher	human	density	is	associated	with	better	data	adequacy	
across	all	metrics.	Citizen	science	survey	effort	is	strongly	
associated	with	population	density	(e.g.	Botts	et	al.,	2011);	
higher	survey	effort	should	yield	more	comprehensive	
coverage	and	more	even	effort

Calculated	using	
data	from	
Australian	
Bureau	of	
Statistics	(2023)

Note:	A	definition,	reference	and	predicted	relationship	between	trait	and	data	adequacy	is	provided	for	each.
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with	 distributions	 that	 straddled	 inland	 Australia,	 where	 survey	
effort	 is	 generally	 lower,	 and	 the	 densely	 populated	 east	 coastal	
fringe,	 where	 survey	 effort	 is	 generally	 higher	 (e.g.	 Pheasant	
Coucal	Centropus phasianinus,	Pied	Butcherbird	Cracticus nigrogula-
ris,	Chestnut-	breasted	Mannikin	Lonchura castaneothorax).	Species	
with	 the	 highest	 scores	 (i.e.	 weakest	 spatial	 bias)	 were	 all	 island	
endemics	 (the	 highest-	scoring	 non-	island	 species	 was	 Eungella	
Honeyeater	Bolemorus hindwoodi	at	0.99).	Spatial	bias	tended	to	be	
stronger	 (lower	CSB	 score)	 in	 the	eBird	dataset	 for	most	 species	
(Figures 2	and	3).

Annual	CSB	values	for	the	combined	dataset	ranged	between	an	
average	of	0.25	in	1993	and	0.46	in	2000	(Figure 4).	Prior	to	1998,	
spatial	bias	was	typically	worse	(lower	score)	in	the	Birdata	dataset;	
since	then,	it	has	been	typically	worse	in	the	eBird	dataset	with	the	
exception	 of	 2020,	 when	 both	 datasets	 had	 approximately	 equal	
spatial	bias	(c.	0.30).

3.2  |  Modelling

We	tested	 the	 relationship	between	 seven	different	 species	 traits	
and	the	three	measures	of	adequacy,	fitting	models	for	561	species.	
Thirty-	seven	species	had	missing	values	that	could	not	be	imputed	
for	at	least	one	of	the	seven	predictor	variables	and	therefore	were	
not	 included.	The	majority	of	missing	values	 (35/37	species)	came	
from	 the	 density	 dataset	 (Santini	 et	 al.,	 2023),	 with	 the	 remain-
ing	 missing	 values	 coming	 from	 the	 body	 mass	 dataset	 (Garnett	
et	al.,	2015).	For	the	most	part,	these	37	species	did	not	share	many	
common	 traits,	 although	 several	 poorly	 known	 species	 (e.g.	 Buff-	
breasted	Buttonquail	T. olivii,	Coxen's	Fig-	Parrot	Cyclopsitta coxeni)	
were	included	in	this	group;	a	full	list	of	all	37	species	with	missing	
values	is	provided	in	Appendix	S3.

The	 fitted	models	mostly	 had	 good	 explanatory	 power,	with	
R2	values	ranging	from	.14	for	total	range	completeness	(adjusted	
R2 = .14,	F10,550 = 9.902,	p = 2.5 × 10

−15)	 to	 .72	 for	checklist	 spatial	
bias	 (adjusted	R2 = .72,	F10,550 = 142.9,	 p < 2.2 × 10

−16)	 and	 .79	 for	
mean	 inventory	 completeness	 (adjusted	 R2 = .79,	 F10,550 = 211.2,	
p < 2.2 × 10−16).	 Effect	 sizes	 for	 most	 coefficients	 tended	 to	 be	
fairly	small,	and	about	half	(16/30)	were	non-	significant	(Figure 5).	
Across	 the	 adequacy	 metrics,	 range	 size	 was	 a	 statistically	 sig-
nificant	 predictor.	 Species	 with	 larger	 range	 sizes	 tended	 to	
have	 lower	 mean	 inventory	 completeness	 (p < 2.2 × 10−16),	 total	
range	 completeness	 (p < 2.2 × 10−16)	 and	 checklist	 spatial	 bias	
(p < 2.2 × 10−16).	Similarly,	average	human	population	density	was	
a	 statistically	 significant	 predictor	 across	 all	 three	metrics,	with	
species	 with	 more	 densely	 populated	 ranges	 typically	 having	
higher	 mean	 inventory	 completeness	 (p < 2.2 × 10−16)	 and	 total	
range	 completeness	 (p < 2.2 × 10−16),	 but	 lower	 checklist	 spatial	
bias	 (p = 1.9 × 10−7).	 Conversely,	 species'	 taxonomic	 uniqueness	
was	not	a	statistically	significant	predictor	for	any	metric.	The	re-
lationships	between	the	other	coefficients	and	the	three	metrics	
were	generally	more	mixed.	Complete	results	for	all	model	coeffi-
cients	are	presented	in	Figure 5.M
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4  |  DISCUSSION

We	used	three	metrics	of	adequacy	to	explore	the	monitoring	capac-
ity	of	citizen	science	data	from	two	major	Australian	programmes,	
eBird	and	Birdata.	Data	adequacy—as	we	have	defined	it—is	a	broadly	
applicable	and	repeatable	way	of	assessing	the	potential	utility	of	a	
dataset	prior	 to	conducting	any	subsequent	analyses,	allowing	an-
alysts	and	end	users	 to	 identify	and	prioritise	 species	and	 regions	
that	will	 benefit	most	 from	 further	monitoring	 efforts.	We	 found	
that	mean	inventory	completeness	and	total	range	completeness	are	

both	higher	in	the	Birdata	dataset	than	in	the	eBird	dataset	for	most	
species,	despite	the	significantly	greater	volume	of	data	in	the	eBird	
dataset.	This	paradoxical	result	is	likely	driven	by	the	stronger	spatial	
bias	(lower	checklist	spatial	bias	scores)	in	the	eBird	dataset,	which	
has	relatively	lower	survey	effort	across	much	of	remote	Australia,	
but	much	higher	effort	in	more	densely	populated	regions.	As	a	con-
sequence	of	this,	citizen	science	data	coverage	for	many	Australian	
bird	species	is	still	incomplete,	especially	those	whose	ranges	span	
the	 arid	 zone.	 However,	 mean	 inventory	 completeness	 and	 total	
range	 completeness	 are	 both	 steadily	 increasing	 year-	by-	year	 for	

F I G U R E  2 Violin	plots	of	the	distributions	of	the	three	data	adequacy	metrics	calculated	across	the	entire	dataset	(598	species)	for	the	
eBird (green),	Birdata	(blue)	and	combined	(black)	datasets.

F I G U R E  3 Cumulative	(year-	on-	year)	change	of	the	three	data	adequacy	metrics	calculated	for	the	eBird	(green),	Birdata	(blue)	and	
combined	(black)	datasets	between	1990	and	2002.	Solid	lines	are	the	median	value	across	all	species	in	each	year;	shaded	ribbons	denote	
the	5th–95th	percentile	range	of	values	for	all	598	species.
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most	 species,	 primarily	 due	 to	 the	 continuing	 rapid	 expansion	 of	
eBird	use	by	the	birdwatching	community	in	the	country.

Two	of	our	metrics	(mean	inventory	completeness	and	total	range	
completeness)	are	alike	in	that,	cumulatively	(year-	on-	year),	they	can	
only	increase	(and	have	mostly	also	increased	year-	by-	year,	as	noted	

above).	However,	the	third	metric	we	present	(checklist	spatial	bias)	
is	not	 constrained	 in	 the	 same	way	and	has	worsened	across	both	
datasets	 in	recent	years	 (Figures 3	and	4).	This	has	 implications	for	
analysts	wishing	to	use	citizen	science	data,	as	spatial	bias	needs	to	
be	considered	and	controlled	for	in	any	analyses	since	uncontrolled	

F I G U R E  4 Annual	(year-	by-	year)	change	of	the	three	data	adequacy	metrics	calculated	for	the	eBird	(green),	Birdata	(blue)	and	combined	
(black)	datasets	between	1990	and	2002.	Solid	lines	are	the	median	value	across	all	species	in	each	year;	shaded	ribbons	denote	the	5th	
95th	percentile	range	of	values	for	all	598	species.

F I G U R E  5 Coefficient	estimates	
(effect	sizes)	and	95%	confidence	
intervals	for	the	three	models	(one	per	
data	adequacy	metric).	Blue = Mean	
Inventory	Completeness;	Green = Total	
Range	Completeness;	Red = Checklist	
Spatial	Bias.	A	negative	coefficient	means	
decreased	data	adequacy	(as	measured	
by	the	specific	metric)	as	the	value	of	
the	predictor	variable	increases,	or	in	
comparison	to	the	reference	state	of	the	
predictor	variable	(CR	for	Threat	Status).	
NB:	the	six	continuous	predictor	variables	
were	all	log-	transformed	to	satisfy	
assumptions	of	normality	and	linearity.	p- 
value	cut-	offs:	p < .001:	***;	 .001 ≤ p < .01:	
**;	.01 ≤ p < .05:	*;	p ≥ .05:	ns.
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spatial	 biases	 can	 lead	 to	 unreliable	 or	 incorrect	 model	 inference	
(Backstrom,	 2022;	 Johnston	 et	 al.,	 2020).	 Fortunately,	 the	 effects	
of	 increased	 spatial	 bias	 (i.e.	 worsening	 checklist	 spatial	 bias)	 may	
be	mitigated	by	the	exponential	growth	in	data	volume	(i.e.	increas-
ing	mean	inventory	completeness	and	total	range	completeness),	as	
larger	data	volumes	across	species'	ranges	allow	analysts	to	use	fil-
tering	and	subsampling	methods	that	account	for	these	worsening	bi-
ases	while	retaining	a	sufficiently	large	sample	size	(see	e.g.	Johnston	
et	al.,	2021).	Furthermore,	 spatial	bias	 in	 the	eBird	dataset	may	be	
stabilising,	likely	reflective	of	consistent	observer	practices	over	time,	
with	growth	now	driven	mainly	by	new	users	rather	than	increased	
survey	effort	per	user.	Such	 insights	provide	valuable	direction	 for	
analysts	wishing	to	use	these	datasets	and	are	enhanced	by	the	syn-
ergy	achieved	by	exploring	multiple	metrics	simultaneously.

The	temporal	context	provided	in	our	analysis	also	highlights	the	
impact	that	guided	approaches	to	citizen	science	can	have	on	data	
adequacy	and	overall	dataset	quality	(Callaghan,	Poore,	et	al.,	2019; 
Callaghan,	Rowley,	et	al.,	2019;	Callaghan,	Watson,	et	al.,	2021).	This	
is	best	demonstrated	by	the	considerable	increase	in	all	three	ade-
quacy	metrics	in	the	Birdata	dataset	during	the	period	1999–2001	
(Figure 4),	 corresponding	 with	 the	 New	 Atlas	 of	 Australian	 Birds	
project	run	by	Birdlife	Australia	(Barrett	et	al.,	2003).	During	this	pe-
riod,	survey	effort	in	remote	Australia	was	considerably	greater	than	
any	period	since,	resulting	in	meaningfully	increased	data	adequacy	
scores	across	all	three	metrics.	Similar	guided	approaches	to	target	
poorly	represented	species	or	regions	could	be	implemented	in	ei-
ther	eBird	or	Birdata	in	the	future,	with	their	effectiveness	assessed	
simply	by	repeating	the	analyses	presented	here.	Indeed,	since	our	
approach	is	not	limited	to	any	region	or	taxonomic	group,	it	may	be	
used	to	broadly	monitor	 the	state	of	knowledge	for	any	group	for	
which	there	have	been	citizen	science	efforts,	targeted	or	otherwise.

Our	methods	 thus	 allow	 for	 species	 to	 be	 classified	 according	
to	how	suitable	available	citizen	science	data	currently	are,	for	any	
given	application.	For	some	species,	currently	available	citizen	sci-
ence	 data	may	 be	 ‘ready	 to	 go’,	 allowing	 for	 populations	 of	 these	
species	 to	be	modelled	and	 tracked	without	significant	 further	 in-	
field	 investment,	 especially	 if	 other	data	 sources	 (e.g.	 pre-	existing	
structured	surveys)	are	integrated	into	models.	However,	for	many	
other	 species,	 particularly	 those	 that	 are	 rare	 or	 cryptic,	 or	 those	
with	 large	 or	 remote	 ranges,	 current	 citizen	 science	 data	 are	 in-
sufficient,	 and	 in	many	 cases,	 broad-	scale	 citizen	 science	projects	
like	eBird	and	Birdata	are	unlikely	to	ever	be	sufficient	unless	more	
targeted	approaches	are	employed.	The	potential	of	such	targeted	
approaches	 is	readily	demonstrated	 in	our	analyses	by	the	consid-
erable	increase	in	all	three	metrics	in	the	Birdata	dataset	during	the	
period	corresponding	with	the	New	Atlas	of	Australian	Birds	project.	
Finally,	for	especially	data-	poor	species	where	targeted	citizen	sci-
ence	approaches	are	either	unavailable	or	unsuccessful,	more	formal	
monitoring	methods	will	likely	be	necessary	to	fill	in	the	gaps.

In	addition	to	providing	values	for	each	of	the	metrics	we	pres-
ent,	we	 also	 explored	 the	 relationship	 between	 each	of	 the	 three	
metrics	 and	 several	 species-	specific	 traits	 (Table 1,	 Figure 5).	We	
found	various	patterns	 in	the	relationships	between	species'	 traits	

and	 the	 three	adequacy	metrics	we	assess.	These	 include	 the	un-
surprising	finding	that	a	species'	range	size	has	strong	implications	
for	how	well-	sampled	a	species	is,	indicating	that	species	with	large	
range	sizes	are	 inherently	more	difficult	 to	fully	sample	and	quan-
tify	 than	 those	 with	 small	 range	 sizes,	 supporting	 other	 research	
(Nandintsetseg	et	al.,	2019).	Similarly,	we	found	a	positive	relation-
ship	between	human	population	density	and	two	of	our	adequacy	
metrics	 (mean	 inventory	 completeness	 and	 total	 range	 complete-
ness),	 further	 supporting	 the	 body	 of	 literature	 that	 has	 found	 a	
strong	bias	in	citizen	science	data	towards	human	settlements	(e.g.	
Botts	 et	 al.,	 2011).	 This	 indicates	 that	 more	 ‘remote’	 species	 are	
most	 likely	 to	 need	 prioritisation	 in	 biodiversity	 research	 and	 tar-
geted	monitoring	 efforts.	 Surprisingly,	 taxonomic	 uniqueness	was	
not	strongly	correlated	with	any	of	our	three	metrics.

Although	we	are	satisfied	with	the	robustness	of	our	analyses,	we	
do	note	a	small	number	of	limitations.	One	issue	is	the	spatial	grain	size	
used.	 The	 sizes	 of	 terrestrial	Australian	 bird	 distributions	 span	more	
than	 five	 orders	 of	 magnitude,	 ranging	 from	 highly	 range-	restricted	
island	 endemics	 to	 species	 found	 across	 the	 entire	 continent;	 even	
among	mainland	taxa,	the	range	is	more	than	two	orders	of	magnitude	
(the	Eungella	Honeyeater	having	the	smallest	range,	being	found	across	
just	c.	0.26%	of	 the	continent).	 In	 some	 instances,	 small	 spatial	grain	
may	be	 important,	particularly	 if	 the	desired	downstream	analyses	or	
management	applications	require	a	similarly	small	grain.	However,	the	
overall	 trends	 we	 observe	 (increasing	 mean	 inventory	 completeness	
and	total	range	completeness,	but	worsening	checklist	Spatial	Bias)	are	
consistent	across	a	 range	of	meaningful	grain	sizes	 (0.2–2.0	degrees;	
Figures S1–S4).	As	such,	while	the	absolute	values	of	the	three	metrics	
tend	to	decrease	with	increasingly	fine-	scale	grain	sizes,	this	is	not	an	
issue	as	the	relative	relationships	remain	intact.

A	second	limitation	to	note	is	that	while	we	present	three	metrics	
of	data	adequacy,	these	are	not	necessarily	a	complete	inventory	of	
all	possible	ways	to	quantify	adequacy	 (we	do	not,	e.g.	attempt	to	
explicitly	 quantify	 adequacy	 in	 the	 temporal	 context),	 nor	 are	 the	
three	presented	necessarily	 essential.	Depending	on	 the	 intended	
research	question(s),	some	metrics	may	be	more	useful	than	others.	
The	 commonality	 between	 all	 data	 adequacy	metrics,	 however,	 is	
their	 ability	 to	provide	 additional	 context	when	exploring	 a	 biodi-
versity	dataset,	and	in	particular	their	ability	to	identify	gaps—parts	
of	the	dataset	with	poor	adequacy—that	may	need	to	be	addressed	
in	any	downstream	applications,	for	example,	by	integrating	citizen	
science	data	with	other	sources.

By	developing	and	presenting	methods	to	quantify	the	adequacy	
of	citizen	science	datasets	for	biodiversity	monitoring,	we	show	it	is	
possible	 to	 identify	 species-	specific	 biases	 and	 gaps.	 Conservation	
efforts	are	typically	most	successful	when	done	at	the	species	level	
(Ward	et	al.,	2020),	and	so	taxonomically	precise	assessments	of	data	
adequacy	 are	 important	 in	 deriving	 appropriate	 conclusions	 from	
observational	datasets	 that	 can	be	directly	applied	 to	conservation	
outcomes.	Species-	specific	measures	of	data	adequacy—a	key	area	of	
novelty	in	our	analysis—allow	for	species	to	be	classified	or	prioritised	
according	to	an	analyst's	specific	needs	and	are	especially	critical	in	
any	conservation-	minded	assessment	of	citizen	science	data.
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