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Abstract

Tracking the state of biodiversity over time is critical to successful conservation, but
conventional monitoring schemes tend to be insufficient to adequately quantify how
species' abundances and distributions are changing. One solution to this issue is to
leverage data generated by citizen scientists, who collect vast quantities of data at
temporal and spatial scales that cannot be matched by most traditional monitoring
methods. However, the quality of citizen science data can vary greatly. In this paper,
we develop three metrics (inventory completeness, range completeness, spatial bias)
to assess the adequacy of spatial observation data. We explore the adequacy of citi-
zen science data at the species level for Australia's terrestrial native birds and then
model these metrics against a suite of seven species traits (threat status, taxonomic
uniqueness, body mass, average count, range size, species density, and human popu-
lation density) to identify predictors of data adequacy. We find that citizen science
data adequacy for Australian birds is increasing across two of our metrics (inventory
completeness and range completeness), but not spatial bias, which has worsened over
time. Relationships between the three metrics and seven traits we modelled were
variable, with only two traits having consistently significant relationships across the
three metrics. Our results suggest that although citizen science data adequacy has
generally increased over time, there are still gaps in the spatial adequacy of citizen
science for monitoring many Australian birds. Despite these gaps, citizen science can
play an important role in biodiversity monitoring by providing valuable baseline data
that may be supplemented by information collected through other methods. We be-
lieve the metrics presented here constitute an easily applied approach to assessing
the utility of citizen science datasets for biodiversity analyses, allowing researchers
to identify and prioritise regions or species with lower data adequacy that will benefit

most from targeted monitoring efforts.
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1 | INTRODUCTION

Biodiversity monitoring is an essential component of conserva-
tion (Lindenmayer et al., 2012). Data collection is the foundation
of successful monitoring, and when effectively collected and an-
alysed, occurrence data can inform the status and trend of spe-
cies, allowing conservation practitioners and policy makers to
identify taxa most in need of targeted management interventions.
However, resources available to formal monitoring schemes are
typically very limited (Kuebbing et al., 2018), meaning that the ma-
jority of species are not well monitored across their entire ranges,
and in many cases, the limits of their range may not be fully known
(Whittaker et al., 2005). Even for relatively well-studied taxa such
as birds, or regions such as North America, Europe, or Australia,
these issues are pervasive (Backstrom et al., 2023). In light of this,
a key challenge facing biodiversity and conservation science is
prioritising species and regions in need of additional monitoring
resources (Wilson et al., 2015).

One increasingly popular approach to biodiversity monitoring
is to leverage data generated by volunteers through citizen science
programmes. Citizen science has led to numerous advances in un-
derstanding species' populations in space and time (e.g. Johnston
et al., 2020; Van Strien et al., 2013), and many visions for biodiver-
sity monitoring that take advantage of citizen science have been
promoted at local, regional and global scales (Chandler et al., 2017,
Pocock et al., 2018). Despite this promise, there are several obsta-
cles limiting the widespread adoption of citizen science (Burgess
etal., 2017), including real or perceived data quality issues leading to
alack of trust by analysts and policymakers (Binley & Bennett, 2023),
and statistical challenges during the analysis of citizen science data
(Johnston et al., 2023). In most circumstances, overcoming these
issues will require some degree of data integration—that is, using
broad-scale citizen science data in combination with localised high-
quality data collected by specialists. To achieve this integration, un-
derstanding the adequacy of citizen science datasets in this context
is an important first step.

In this paper, we provide methods to assess data adequacy in
two different contexts: completeness (two metrics) and bias. For the
most part, these two contexts have been well-studied across various
citizen science datasets (Deacon et al., 2023; Kelling et al., 2019; La
Sorte & Somveille, 2020; Shirey et al., 2021), but to date, few studies
have quantified data adequacy at a per-species level—instead tend-
ing to explore them across spatial and temporal scales, identifying,
for example, poorly sampled regions or temporal periods (Callaghan
et al., 2022; Girardello et al., 2019), or exploring adequacy at higher
taxonomic levels (Di Cecco et al., 2021; Mesaglio et al., 2023). We
extend this body of literature by quantifying adequacy at the spe-
cies level for Australia's terrestrial native birds. The advantage of

the species-level approach we present here is that adequacy can
be directly related to the monitoring and conservation of individual
species, allowing for frameworks which can (1) identify species for
which currently available data may be ‘ready to go’ and can be used
as-is for modelling and tracking of populations and (2) prioritise spe-
cies where investment in a ‘boots on the ground’ approach may be
needed to fill knowledge gaps and establish a more complete picture
of that species' conservation status (Backstrom et al., 2023).

We provide three metrics that can be used to assess data ade-
quacy at a per-species level in citizen science datasets. We then use
data from two major Australian citizen science projects to calculate
these metrics for all native Australian land birds. Considering the re-
sults of these analyses, we assess the value of each metric in the
context of current knowledge on the distribution, abundance and
status of Australia's birds and how each of the two Australian citizen
science projects compare. We then model these metrics against a
suite of seven species traits to identify any patterns and predictors
of data adequacy that may permit a better understanding of data ad-
equacy. Finally, we identify species and traits for which these anal-
yses produced unexpected results, consider the possible reasons
for these results and discuss whether these metrics could provide
important novel information that improves our ability to assess the

distribution, abundance and conservation status of species.

2 | MATERIALS AND METHODS
2.1 | Datasets

We used species occurrence data from two major citizen science
programmes, eBird (Cornell Lab of Ornithology, 2022) and Birdata
(Birdlife Australia, 2023). These programmes are the two largest
(by volume) ecological citizen science datasets in Australia and col-
lectively make up c. 75% of all bird records in the Atlas of Living
Australia (https://www.ala.org.au). The two platforms are similar
in that they are both semi-structured (Kelling et al., 2019), allowing
users flexibility in when, where and how they survey birds. However,
Birdata tends to offer slightly more direction to users, in particular
through a number of more structured protocols (e.g. 2-ha, 20-min
surveys) and broad-scale programmes with more specific data col-
lection aims (e.g. Powerful Owl Project, Beach Nesting Birds Project,
New Atlas of Australian Birds). In contrast, eBird typically offers very
little specific direction to users beyond a small number of general
suggestions (e.g. lists should be under 5miles/8km in length and
3h in duration). The commonalities in structure between eBird and
Birdata allow for data from the two platforms to be readily combined
in analyses such as these, although analysts ought to be mindful of
the differences between the two, as we show here.
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We filtered the two datasets to include only records from
mainland Australia and offshore territories; marine species were
excluded. Using the Working List of Australian Birds v2 (Birdlife
Australia, 2017) as a reference, we excluded occurrences of species
classified as exotic, vagrant or extinct, and filtered out data from
non-complete checklists (i.e. incidental observations). Duplicate
copies of shared checklists (i.e. lists from people who were bird-
watching together) were removed from the eBird dataset. We did
not filter by other effort variables (e.g. duration, distance). We in-
cluded records from all years (historical sightings were included), and
we did not conduct any additional error checking beyond what is
already done by the two programmes. We used species distribution
data from two sources: Birdlife International (BirdLife International
& Handbook of the Birds of the World, 2020) and the Australian Bird
Guide (Menkhorst et al., 2017). These represent the most up-to-date
spatial datasets of Australian bird distributions. Species distributions
were combined across the two sources, clipped to mainland Australia
and offshore territories, then filtered to only include extant, non-
vagrant ranges. Occurrences of species outside their mapped dis-
tributions were assumed to be vagrants and were removed from
the combined occurrence dataset. We used the Working List of
Australian Birds v2 (Birdlife Australia, 2017) as our baseline taxon-
omy, but as each of our four datasets uses a different taxonomic
list, we had to manually resolve conflicting taxonomic arrangements,

generally by combining ambiguous taxa at the lowest possible level.
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The combined occurrence dataset contained approximately 42 mil-
lion observations referring to 598 species (Figure 1, panel a) and the
combined species distribution maps covered all 598 species in the
occurrence data (Figure 1, panel b). To facilitate the calculation of
our data adequacy metrics, we simplified all datasets to a 1-degree
grid of the Australian region (Figure 1, panel c). This spatial scale
was chosen as a balance between being fine enough to permit spa-
tially relevant conservation and management conclusions, while
being coarse enough to allow for sufficient data aggregation and for
processing to complete in a manageable time frame. We tested the
effect of changing this scale (at 2.0, 1.0, 0.5 and 0.2 degrees) and
observed similar relative trends across metrics (Figures S1-S4).

2.2 | Adequacy metrics
We present three adequacy metrics, aimed at answering different
questions (Figure 1, panel d).

2.21 | Mean inventory completeness
Mean inventory completeness (MIC) answers the question ‘how ad-
equately surveyed is this species' range'?. It is defined as the aver-

age (mean) inventory completeness of all grid cells across a species'
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FIGURE 1 Methods framework used
in this analysis. Occurrence data from two
major citizen science programmes, and 3.
distribution data from two sources, were
combined to produce three metrics of
data adequacy. The relationships of seven

(d) Data adequacy metrics

1. Mean Inventory Completeness
How adequately surveyed is this species’ range?

2. Total Range Completeness

How well surveyed is this species across its range? '

Checklist Spatial Bias
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species traits with each of these metrics
were then modelled.

Vector images from Phylopic: Ferran Sayol (CCO 1.0), T. Michael Keesey (PDM 1.0), Edwin Price (CCO0 1.0),
Michael Scroggie (CCO 1.0), Andy Wilson (CCO 1.0), Jiro Wada/Tony Goldberg (CCO 1.0).
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range, where inventory completeness (in this instance) is the pro-
portion of the observed diversity (the number of species recorded)
relative to the expected diversity (the number of species mapped) in
a given cell. Cells with sufficient sampling effort to detect the entire
assemblage of species expected to be present will have high inven-
tory completeness (values close to 1), and therefore species whose
ranges overlap with these well-surveyed cells will have high mean
inventory completeness scores, suggestive of a species whose range

has been adequately surveyed.

2.2.2 | Total range completeness

Total range completeness (TRC) answers the question ‘how well sur-
veyed is this species across its range’?. It is defined as the propor-
tion of a species' mapped range for which there are records of the
species at the chosen grid cell grain (in our case, 1 degree). Species
with high total range completeness (values close to 1) have records
across much of their range, indicating that the species is well sur-
veyed across its range, and likely allowing for more robust modelling

of distribution and abundance.

2.2.3 | Checklist spatial bias

Checklist spatial bias (CSB) answers the question ‘how biased are the
data we have for this species’?. It is defined as the spatial sampling bias
of checklists in each cell across a species' range, following the methods
developed by Backstrom (2022). Here, bias is the proportional differ-
ence between the observed distribution of sampling effort (in this in-
stance, number of checklists in each grid cell across a species' range)
and an expected (null) distribution (i.e. uniform spatial distribution of
sampling effort across a species' range); more details are provided in
Backstrom (2022). In this paper, we present spatial bias as the inverse
of the bias of Backstrom (2022), thatis 1 — H, so as to keep the same di-
rectional coding as the other two measures (higher is better). As strong
sampling bias can impede modelling (Johnston et al., 2020), species
with weaker checklist spatial bias (i.e. higher scores) are likely better
suited to a ‘ready-to-go’ approach, whereas species with stronger bias
(i.e. lower scores) may require more nuanced modelling, or aggressive
data filtering (e.g. Johnston et al., 2020).

2.3 | Analysis

We analysed the above three data adequacy metrics across all 598
species. We analysed the two datasets (eBird and Birdata) both
independently and combined. We explored (a) values of the three
data adequacy metrics for the entire dataset; (b) cumulative (year-
on-year) changes in the values of each of the three metrics for the
period 1980-2022 (i.e. how these metrics change when more data
are added to the two datasets each year) and (c) annual (year-by-
year) changes in each of the three metrics across the same period.

2.4 | Modelling

To further explore the factors associated with data adequacy, we
developed a set of linear models to identify traits that may predict
various adequacy metrics (Figure 1, panel e). We identified seven
possible traits (Table 1) and constructed a simple linear model fit to

each of the three adequacy metrics as follows (N =3 models):

Adequacy = g+ f, x threat status+ B, x taxonomic uniqueness
+ B3 X body mass + B, x average count + f5 X range size

+ B¢ X species density + 7 x human density + e

where f is the intercept of data adequacy (one of the three metrics
defined above, for the entire combined dataset), g, is the partial re-
gression slope of data adequacy on the species' International Union
for Conservation of Nature (IUCN) threat status, as measured by the
Action Plan for Australian Birds 2020 (Garnett & Baker, 2021), f, is the
partial regression slope of data adequacy on the species' taxonomic
uniqueness (a measure of how evolutionarily distinct a species is), as
defined by Szabo et al. (2012) and presented in Garnett et al. (2015),
f5 is the partial regression slope of data adequacy on the species' av-
erage body mass, as presented in Garnett et al. (2015), f, is the partial
regression slope of data adequacy on the average count of the species,
calculated directly from the combined observation dataset used in the
analysis, fs is the partial regression slope of data adequacy on the spe-
cies' range size, calculated directly from the combined range maps used
in the analysis, 4 is the partial regression slope of data adequacy on
the species' modelled density, as presented in Santini et al. (2023),
is the partial regression slope of data adequacy on the average human
population density (people/km?) across the species' range, calculated
using data from Australian Bureau of Statistics (2023) and ¢ is the re-
sidual variation in data adequacy for individual species in the dataset.

The six continuous predictor variables were all log-transformed
to satisfy assumptions of normality and linearity. Model assumptions
were checked using the package performance (Lidecke et al., 2021)
and all modelling and analysis were conducted in R 4.2.0 (R Core
Team, 2022).

3 | RESULTS
3.1 | Analysis
3.1.1 | Mean inventory completeness

Mean inventory completeness values ranged between 0.61 and
0.96 for the entire combined dataset (mean 0.78, median 0.77;
Table 2, Figure 2). The species with the lowest MIC values were all
scarce, desert-dwelling species with fairly large ranges (e.g. Dusky
Grasswren Amytornis purnelli, Princess Parrot Polytelis alexandrae,
Grey Honeyeater Conopophila whitei), whereas those with the high-
est scores were all range-restricted island endemics (the highest-
scoring non-island species was the Wet Tropics endemic Chowchilla
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TABLE 1 The seven traits used in modelling of the three data adequacy metrics.

Trait

Threat status

Taxonomic
uniqueness

Average body
mass

Average count

Range size

Species density

Human density

Definition

IUCN Red List category
(IUCN, 2001). Further details
in Garnett and Baker (2021)

A constructed measure of taxon
uniqueness. Further details in
Garnett et al. (2015)

Mean body mass (in grams) of
all birds measured. Further
details in Garnett et al. (2015)

Mean count (where reported) of
observations of the species
in the combined dataset

Area of combined, gridded and
clipped distributions of the
species in the dataset

Modelled species density across
its whole range. Further
details in Santini et al. (2023)

Mean human density across the
species' range

Prediction

Higher threat status is associated with poorer data adequacy
across all metrics. Threatened species typically have smaller
population sizes (Mace et al., 2008), making them harder to
find across their range, particularly for threatened species
with remote ranges

Higher taxonomic uniqueness is associated with better data
adequacy across all metrics. Taxonomically unique species
may be favoured by birdwatchers (Steven et al., 2017),
resulting in distinctive species being disproportionately
sought out and detected across their ranges

Higher average body mass is associated with better data
adequacy across all metrics. Larger birds are over-
represented in unstructured citizen science data (Callaghan,
Poore, et al., 2021); this may also manifest in semi-structured
datasets as better data adequacy

Higher average count is associated with better data adequacy

Ecology and Evolution 50f 12
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Reference

Action plan for

Australian birds
2020 (Garnett &

Baker, 2021)

Defined by Szabo

et al. (2012)

and presented

in Garnett
et al. (2015)

Garnett et al. (2015)

Calculated directly

across all metrics. Species that tend to occur in high numbers from the

should be more readily detected across their ranges, resulting combined

in better data adequacy scores observation
dataset

Larger range size is associated with poorer data adequacy across

Calculated directly

all metrics. Larger ranges are inherently more difficult to from the
comprehensively survey (Nandintsetseg et al., 2019) and are combined
more likely to have high spatial sampling variation across the distribution
range dataset

Higher species density is associated with better data adequacy
across all metrics. Less scarce (higher density) species should
be more readily detected across their ranges, resulting in
better data adequacy scores

Higher human density is associated with better data adequacy

Santini et al. (2023)

Calculated using

across all metrics. Citizen science survey effort is strongly data from
associated with population density (e.g. Botts et al., 2011); Australian
higher survey effort should yield more comprehensive Bureau of

coverage and more even effort

Statistics (2023)

Note: A definition, reference and predicted relationship between trait and data adequacy is provided for each.

Orthonyx spaldingii at 0.93). MIC values tended to be higher in the
Birdata dataset than the eBird dataset (Figure 2), although at present
growth rates this is likely to change by c. 2025 (Figure 3).

Annual MIC values for the combined dataset ranged between an
average of 0.10 in 1990 and 0.46 in 2000 (Figure 4). Prior to 1998
and after 2011, the eBird dataset had higher average MIC values,
whereas between these years the Birdata dataset dominated, par-
ticularly between 1999 and 2001.

3.1.2 | Total range completeness

Total range completeness values ranged between 0.01 and 1.00
for the entire combined dataset (mean 0.71, median 0.74; Table 2,
Figure 2). The species with the lowest TRC values were all either
very rare, very cryptic or both (e.g. Night Parrot Pezoporus occiden-
talis, Buff-breasted Buttonquail Turnix olivii, Princess Parrot Polytelis
alexandrae), whereas those with the highest scores were primarily

island endemics (two range-restricted mainland species, Eungella
Honeyeater Bolemoreus hindwoodi and Yellow-spotted Honeyeater
Meliphaga notata, also had TRC values of 1). TRC values tended to be
higher in the Birdata dataset than in the eBird dataset, although this
is likely to change by c. 2025 with present growth rates (Figure 3).

Annual TRC values for the combined dataset ranged between an
average of 0.09 in 1990 and 0.42 in 2022 (Figure 4). Prior to 1998
and after 2011, the eBird dataset had higher average TRC values,
whereas between these years the Birdata dataset dominated, par-
ticularly between 1999 and 2001.

3.1.3 | Checklist spatial bias

Checklist spatial bias values ranged between 0.21 and 1.00 for
the combined dataset (mean 0.37, median 0.33; Table 2, Figure 2).
The species with the lowest CSB values (i.e. strongest spatial bias)
shared few obvious traits, but were often wide-ranging species
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(Continued)

TABLE 2

Checklist spatial bias

Total range completeness

Mean inventory completeness

0.228

Grus antigone
Sarus Crane

597

0.069

Turnix olivii

597

0.608

Polytelis alexandrae
Princess Parrot

597

Buff-breasted Buttonquail

0.214

Cracticus mentalis

598

0.014

Pezoporus occidentalis
Night Parrot

598

0.608

Amytornis purnelli

598

Black-backed Butcherbird

Dusky Grasswren

Note: Full version is available in Appendix S2.
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with distributions that straddled inland Australia, where survey
effort is generally lower, and the densely populated east coastal
fringe, where survey effort is generally higher (e.g. Pheasant
Coucal Centropus phasianinus, Pied Butcherbird Cracticus nigrogula-
ris, Chestnut-breasted Mannikin Lonchura castaneothorax). Species
with the highest scores (i.e. weakest spatial bias) were all island
endemics (the highest-scoring non-island species was Eungella
Honeyeater Bolemorus hindwoodi at 0.99). Spatial bias tended to be
stronger (lower CSB score) in the eBird dataset for most species
(Figures 2 and 3).

Annual CSB values for the combined dataset ranged between an
average of 0.25 in 1993 and 0.46 in 2000 (Figure 4). Prior to 1998,
spatial bias was typically worse (lower score) in the Birdata dataset;
since then, it has been typically worse in the eBird dataset with the
exception of 2020, when both datasets had approximately equal
spatial bias (c. 0.30).

3.2 | Modelling

We tested the relationship between seven different species traits
and the three measures of adequacy, fitting models for 561 species.
Thirty-seven species had missing values that could not be imputed
for at least one of the seven predictor variables and therefore were
not included. The majority of missing values (35/37 species) came
from the density dataset (Santini et al., 2023), with the remain-
ing missing values coming from the body mass dataset (Garnett
et al., 2015). For the most part, these 37 species did not share many
common traits, although several poorly known species (e.g. Buff-
breasted Buttonquail T.olivii, Coxen's Fig-Parrot Cyclopsitta coxeni)
were included in this group; a full list of all 37 species with missing
values is provided in Appendix S3.

The fitted models mostly had good explanatory power, with
R? values ranging from .14 for total range completeness (adjusted
R?=.14, F,( 55,=9.902, p=2.5x10"") to .72 for checklist spatial
bias (adjusted R?=.72, F,.50=142.9, p<2.2x107") and .79 for
mean inventory completeness (adjusted R%2=.79, F10y550=211.2,
p<2.2x107%). Effect sizes for most coefficients tended to be
fairly small, and about half (16/30) were non-significant (Figure 5).
Across the adequacy metrics, range size was a statistically sig-
nificant predictor. Species with larger range sizes tended to
have lower mean inventory completeness (p<2.2x 107, total
range completeness (p<2.2x107%%) and checklist spatial bias
(p<2.2x107%). Similarly, average human population density was
a statistically significant predictor across all three metrics, with
species with more densely populated ranges typically having
higher mean inventory completeness (p<2.2%x107%) and total
range completeness (p<2.2x107%), but lower checklist spatial
bias (p:1.9><10'7). Conversely, species' taxonomic uniqueness
was not a statistically significant predictor for any metric. The re-
lationships between the other coefficients and the three metrics
were generally more mixed. Complete results for all model coeffi-
cients are presented in Figure 5.
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4 | DISCUSSION

We used three metrics of adequacy to explore the monitoring capac-
ity of citizen science data from two major Australian programmes,
eBird and Birdata. Data adequacy—as we have defined it—is a broadly
applicable and repeatable way of assessing the potential utility of a
dataset prior to conducting any subsequent analyses, allowing an-
alysts and end users to identify and prioritise species and regions
that will benefit most from further monitoring efforts. We found
that mean inventory completeness and total range completeness are

both higher in the Birdata dataset than in the eBird dataset for most
species, despite the significantly greater volume of data in the eBird
dataset. This paradoxical result is likely driven by the stronger spatial
bias (lower checklist spatial bias scores) in the eBird dataset, which
has relatively lower survey effort across much of remote Australia,
but much higher effort in more densely populated regions. As a con-
sequence of this, citizen science data coverage for many Australian
bird species is still incomplete, especially those whose ranges span
the arid zone. However, mean inventory completeness and total

range completeness are both steadily increasing year-by-year for
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FIGURE 5 Coefficient estimates
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intervals for the three models (one per
data adequacy metric). Blue=Mean
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Spatial Bias. A negative coefficient means
decreased data adequacy (as measured
by the specific metric) as the value of

the predictor variable increases, or in
comparison to the reference state of the
predictor variable (CR for Threat Status).
NB: the six continuous predictor variables
were all log-transformed to satisfy
assumptions of normality and linearity. p-
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**,.01<p<.05: % p2.05: ns.
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most species, primarily due to the continuing rapid expansion of

eBird use by the birdwatching community in the country.

Two of our metrics (mean inventory completeness and total range

completeness) are alike in that, cumulatively (year-on-year), they can
only increase (and have mostly also increased year-by-year, as noted

above). However, the third metric we present (checklist spatial bias)
is not constrained in the same way and has worsened across both
datasets in recent years (Figures 3 and 4). This has implications for
analysts wishing to use citizen science data, as spatial bias needs to
be considered and controlled for in any analyses since uncontrolled
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spatial biases can lead to unreliable or incorrect model inference
(Backstrom, 2022; Johnston et al., 2020). Fortunately, the effects
of increased spatial bias (i.e. worsening checklist spatial bias) may
be mitigated by the exponential growth in data volume (i.e. increas-
ing mean inventory completeness and total range completeness), as
larger data volumes across species' ranges allow analysts to use fil-
tering and subsampling methods that account for these worsening bi-
ases while retaining a sufficiently large sample size (see e.g. Johnston
et al., 2021). Furthermore, spatial bias in the eBird dataset may be
stabilising, likely reflective of consistent observer practices over time,
with growth now driven mainly by new users rather than increased
survey effort per user. Such insights provide valuable direction for
analysts wishing to use these datasets and are enhanced by the syn-
ergy achieved by exploring multiple metrics simultaneously.

The temporal context provided in our analysis also highlights the
impact that guided approaches to citizen science can have on data
adequacy and overall dataset quality (Callaghan, Poore, et al., 2019;
Callaghan, Rowley, et al., 2019; Callaghan, Watson, et al., 2021). This
is best demonstrated by the considerable increase in all three ade-
quacy metrics in the Birdata dataset during the period 1999-2001
(Figure 4), corresponding with the New Atlas of Australian Birds
project run by Birdlife Australia (Barrett et al., 2003). During this pe-
riod, survey effort in remote Australia was considerably greater than
any period since, resulting in meaningfully increased data adequacy
scores across all three metrics. Similar guided approaches to target
poorly represented species or regions could be implemented in ei-
ther eBird or Birdata in the future, with their effectiveness assessed
simply by repeating the analyses presented here. Indeed, since our
approach is not limited to any region or taxonomic group, it may be
used to broadly monitor the state of knowledge for any group for
which there have been citizen science efforts, targeted or otherwise.

Our methods thus allow for species to be classified according
to how suitable available citizen science data currently are, for any
given application. For some species, currently available citizen sci-
ence data may be ‘ready to go’, allowing for populations of these
species to be modelled and tracked without significant further in-
field investment, especially if other data sources (e.g. pre-existing
structured surveys) are integrated into models. However, for many
other species, particularly those that are rare or cryptic, or those
with large or remote ranges, current citizen science data are in-
sufficient, and in many cases, broad-scale citizen science projects
like eBird and Birdata are unlikely to ever be sufficient unless more
targeted approaches are employed. The potential of such targeted
approaches is readily demonstrated in our analyses by the consid-
erable increase in all three metrics in the Birdata dataset during the
period corresponding with the New Atlas of Australian Birds project.
Finally, for especially data-poor species where targeted citizen sci-
ence approaches are either unavailable or unsuccessful, more formal
monitoring methods will likely be necessary to fill in the gaps.

In addition to providing values for each of the metrics we pres-
ent, we also explored the relationship between each of the three
metrics and several species-specific traits (Table 1, Figure 5). We
found various patterns in the relationships between species' traits

and the three adequacy metrics we assess. These include the un-
surprising finding that a species' range size has strong implications
for how well-sampled a species is, indicating that species with large
range sizes are inherently more difficult to fully sample and quan-
tify than those with small range sizes, supporting other research
(Nandintsetseg et al., 2019). Similarly, we found a positive relation-
ship between human population density and two of our adequacy
metrics (mean inventory completeness and total range complete-
ness), further supporting the body of literature that has found a
strong bias in citizen science data towards human settlements (e.g.
Botts et al.,, 2011). This indicates that more ‘remote’ species are
most likely to need prioritisation in biodiversity research and tar-
geted monitoring efforts. Surprisingly, taxonomic uniqueness was
not strongly correlated with any of our three metrics.

Although we are satisfied with the robustness of our analyses, we
do note a small number of limitations. One issue is the spatial grain size
used. The sizes of terrestrial Australian bird distributions span more
than five orders of magnitude, ranging from highly range-restricted
island endemics to species found across the entire continent; even
among mainland taxa, the range is more than two orders of magnitude
(the Eungella Honeyeater having the smallest range, being found across
just c. 0.26% of the continent). In some instances, small spatial grain
may be important, particularly if the desired downstream analyses or
management applications require a similarly small grain. However, the
overall trends we observe (increasing mean inventory completeness
and total range completeness, but worsening checklist Spatial Bias) are
consistent across a range of meaningful grain sizes (0.2-2.0 degrees;
Figures S1-54). As such, while the absolute values of the three metrics
tend to decrease with increasingly fine-scale grain sizes, this is not an
issue as the relative relationships remain intact.

A second limitation to note is that while we present three metrics
of data adequacy, these are not necessarily a complete inventory of
all possible ways to quantify adequacy (we do not, e.g. attempt to
explicitly quantify adequacy in the temporal context), nor are the
three presented necessarily essential. Depending on the intended
research question(s), some metrics may be more useful than others.
The commonality between all data adequacy metrics, however, is
their ability to provide additional context when exploring a biodi-
versity dataset, and in particular their ability to identify gaps—parts
of the dataset with poor adequacy—that may need to be addressed
in any downstream applications, for example, by integrating citizen
science data with other sources.

By developing and presenting methods to quantify the adequacy
of citizen science datasets for biodiversity monitoring, we show it is
possible to identify species-specific biases and gaps. Conservation
efforts are typically most successful when done at the species level
(Ward et al., 2020), and so taxonomically precise assessments of data
adequacy are important in deriving appropriate conclusions from
observational datasets that can be directly applied to conservation
outcomes. Species-specific measures of data adequacy—a key area of
novelty in our analysis—allow for species to be classified or prioritised
according to an analyst's specific needs and are especially critical in
any conservation-minded assessment of citizen science data.
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