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Abstract
Tracking the state of biodiversity over time is critical to successful conservation, but 
conventional monitoring schemes tend to be insufficient to adequately quantify how 
species' abundances and distributions are changing. One solution to this issue is to 
leverage data generated by citizen scientists, who collect vast quantities of data at 
temporal and spatial scales that cannot be matched by most traditional monitoring 
methods. However, the quality of citizen science data can vary greatly. In this paper, 
we develop three metrics (inventory completeness, range completeness, spatial bias) 
to assess the adequacy of spatial observation data. We explore the adequacy of citi-
zen science data at the species level for Australia's terrestrial native birds and then 
model these metrics against a suite of seven species traits (threat status, taxonomic 
uniqueness, body mass, average count, range size, species density, and human popu-
lation density) to identify predictors of data adequacy. We find that citizen science 
data adequacy for Australian birds is increasing across two of our metrics (inventory 
completeness and range completeness), but not spatial bias, which has worsened over 
time. Relationships between the three metrics and seven traits we modelled were 
variable, with only two traits having consistently significant relationships across the 
three metrics. Our results suggest that although citizen science data adequacy has 
generally increased over time, there are still gaps in the spatial adequacy of citizen 
science for monitoring many Australian birds. Despite these gaps, citizen science can 
play an important role in biodiversity monitoring by providing valuable baseline data 
that may be supplemented by information collected through other methods. We be-
lieve the metrics presented here constitute an easily applied approach to assessing 
the utility of citizen science datasets for biodiversity analyses, allowing researchers 
to identify and prioritise regions or species with lower data adequacy that will benefit 
most from targeted monitoring efforts.
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1  |  INTRODUC TION

Biodiversity monitoring is an essential component of conserva-
tion (Lindenmayer et al., 2012). Data collection is the foundation 
of successful monitoring, and when effectively collected and an-
alysed, occurrence data can inform the status and trend of spe-
cies, allowing conservation practitioners and policy makers to 
identify taxa most in need of targeted management interventions. 
However, resources available to formal monitoring schemes are 
typically very limited (Kuebbing et al., 2018), meaning that the ma-
jority of species are not well monitored across their entire ranges, 
and in many cases, the limits of their range may not be fully known 
(Whittaker et al., 2005). Even for relatively well-studied taxa such 
as birds, or regions such as North America, Europe, or Australia, 
these issues are pervasive (Backstrom et al., 2023). In light of this, 
a key challenge facing biodiversity and conservation science is 
prioritising species and regions in need of additional monitoring 
resources (Wilson et al., 2015).

One increasingly popular approach to biodiversity monitoring 
is to leverage data generated by volunteers through citizen science 
programmes. Citizen science has led to numerous advances in un-
derstanding species' populations in space and time (e.g. Johnston 
et al., 2020; Van Strien et al., 2013), and many visions for biodiver-
sity monitoring that take advantage of citizen science have been 
promoted at local, regional and global scales (Chandler et al., 2017; 
Pocock et al., 2018). Despite this promise, there are several obsta-
cles limiting the widespread adoption of citizen science (Burgess 
et al., 2017), including real or perceived data quality issues leading to 
a lack of trust by analysts and policymakers (Binley & Bennett, 2023), 
and statistical challenges during the analysis of citizen science data 
(Johnston et  al.,  2023). In most circumstances, overcoming these 
issues will require some degree of data integration—that is, using 
broad-scale citizen science data in combination with localised high-
quality data collected by specialists. To achieve this integration, un-
derstanding the adequacy of citizen science datasets in this context 
is an important first step.

In this paper, we provide methods to assess data adequacy in 
two different contexts: completeness (two metrics) and bias. For the 
most part, these two contexts have been well-studied across various 
citizen science datasets (Deacon et al., 2023; Kelling et al., 2019; La 
Sorte & Somveille, 2020; Shirey et al., 2021), but to date, few studies 
have quantified data adequacy at a per-species level—instead tend-
ing to explore them across spatial and temporal scales, identifying, 
for example, poorly sampled regions or temporal periods (Callaghan 
et al., 2022; Girardello et al., 2019), or exploring adequacy at higher 
taxonomic levels (Di Cecco et al., 2021; Mesaglio et al., 2023). We 
extend this body of literature by quantifying adequacy at the spe-
cies level for Australia's terrestrial native birds. The advantage of 

the species-level approach we present here is that adequacy can 
be directly related to the monitoring and conservation of individual 
species, allowing for frameworks which can (1) identify species for 
which currently available data may be ‘ready to go’ and can be used 
as-is for modelling and tracking of populations and (2) prioritise spe-
cies where investment in a ‘boots on the ground’ approach may be 
needed to fill knowledge gaps and establish a more complete picture 
of that species' conservation status (Backstrom et al., 2023).

We provide three metrics that can be used to assess data ade-
quacy at a per-species level in citizen science datasets. We then use 
data from two major Australian citizen science projects to calculate 
these metrics for all native Australian land birds. Considering the re-
sults of these analyses, we assess the value of each metric in the 
context of current knowledge on the distribution, abundance and 
status of Australia's birds and how each of the two Australian citizen 
science projects compare. We then model these metrics against a 
suite of seven species traits to identify any patterns and predictors 
of data adequacy that may permit a better understanding of data ad-
equacy. Finally, we identify species and traits for which these anal-
yses produced unexpected results, consider the possible reasons 
for these results and discuss whether these metrics could provide 
important novel information that improves our ability to assess the 
distribution, abundance and conservation status of species.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

We used species occurrence data from two major citizen science 
programmes, eBird (Cornell Lab of Ornithology, 2022) and Birdata 
(Birdlife Australia,  2023). These programmes are the two largest 
(by volume) ecological citizen science datasets in Australia and col-
lectively make up c. 75% of all bird records in the Atlas of Living 
Australia (https://​www.​ala.​org.​au). The two platforms are similar 
in that they are both semi-structured (Kelling et al., 2019), allowing 
users flexibility in when, where and how they survey birds. However, 
Birdata tends to offer slightly more direction to users, in particular 
through a number of more structured protocols (e.g. 2-ha, 20-min 
surveys) and broad-scale programmes with more specific data col-
lection aims (e.g. Powerful Owl Project, Beach Nesting Birds Project, 
New Atlas of Australian Birds). In contrast, eBird typically offers very 
little specific direction to users beyond a small number of general 
suggestions (e.g. lists should be under 5 miles/8 km in length and 
3 h in duration). The commonalities in structure between eBird and 
Birdata allow for data from the two platforms to be readily combined 
in analyses such as these, although analysts ought to be mindful of 
the differences between the two, as we show here.

T A X O N O M Y  C L A S S I F I C A T I O N
Biodiversity ecology, Conservation ecology
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We filtered the two datasets to include only records from 
mainland Australia and offshore territories; marine species were 
excluded. Using the Working List of Australian Birds v2 (Birdlife 
Australia, 2017) as a reference, we excluded occurrences of species 
classified as exotic, vagrant or extinct, and filtered out data from 
non-complete checklists (i.e. incidental observations). Duplicate 
copies of shared checklists (i.e. lists from people who were bird-
watching together) were removed from the eBird dataset. We did 
not filter by other effort variables (e.g. duration, distance). We in-
cluded records from all years (historical sightings were included), and 
we did not conduct any additional error checking beyond what is 
already done by the two programmes. We used species distribution 
data from two sources: Birdlife International (BirdLife International 
& Handbook of the Birds of the World, 2020) and the Australian Bird 
Guide (Menkhorst et al., 2017). These represent the most up-to-date 
spatial datasets of Australian bird distributions. Species distributions 
were combined across the two sources, clipped to mainland Australia 
and offshore territories, then filtered to only include extant, non-
vagrant ranges. Occurrences of species outside their mapped dis-
tributions were assumed to be vagrants and were removed from 
the combined occurrence dataset. We used the Working List of 
Australian Birds v2 (Birdlife Australia, 2017) as our baseline taxon-
omy, but as each of our four datasets uses a different taxonomic 
list, we had to manually resolve conflicting taxonomic arrangements, 
generally by combining ambiguous taxa at the lowest possible level. 

The combined occurrence dataset contained approximately 42 mil-
lion observations referring to 598 species (Figure 1, panel a) and the 
combined species distribution maps covered all 598 species in the 
occurrence data (Figure 1, panel b). To facilitate the calculation of 
our data adequacy metrics, we simplified all datasets to a 1-degree 
grid of the Australian region (Figure  1, panel c). This spatial scale 
was chosen as a balance between being fine enough to permit spa-
tially relevant conservation and management conclusions, while 
being coarse enough to allow for sufficient data aggregation and for 
processing to complete in a manageable time frame. We tested the 
effect of changing this scale (at 2.0, 1.0, 0.5 and 0.2 degrees) and 
observed similar relative trends across metrics (Figures S1–S4).

2.2  |  Adequacy metrics

We present three adequacy metrics, aimed at answering different 
questions (Figure 1, panel d).

2.2.1  | Mean inventory completeness

Mean inventory completeness (MIC) answers the question ‘how ad-
equately surveyed is this species' range’?. It is defined as the aver-
age (mean) inventory completeness of all grid cells across a species' 

F I G U R E  1 Methods framework used 
in this analysis. Occurrence data from two 
major citizen science programmes, and 
distribution data from two sources, were 
combined to produce three metrics of 
data adequacy. The relationships of seven 
species traits with each of these metrics 
were then modelled.
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range, where inventory completeness (in this instance) is the pro-
portion of the observed diversity (the number of species recorded) 
relative to the expected diversity (the number of species mapped) in 
a given cell. Cells with sufficient sampling effort to detect the entire 
assemblage of species expected to be present will have high inven-
tory completeness (values close to 1), and therefore species whose 
ranges overlap with these well-surveyed cells will have high mean 
inventory completeness scores, suggestive of a species whose range 
has been adequately surveyed.

2.2.2  |  Total range completeness

Total range completeness (TRC) answers the question ‘how well sur-
veyed is this species across its range’?. It is defined as the propor-
tion of a species' mapped range for which there are records of the 
species at the chosen grid cell grain (in our case, 1 degree). Species 
with high total range completeness (values close to 1) have records 
across much of their range, indicating that the species is well sur-
veyed across its range, and likely allowing for more robust modelling 
of distribution and abundance.

2.2.3  |  Checklist spatial bias

Checklist spatial bias (CSB) answers the question ‘how biased are the 
data we have for this species’?. It is defined as the spatial sampling bias 
of checklists in each cell across a species' range, following the methods 
developed by Backstrom (2022). Here, bias is the proportional differ-
ence between the observed distribution of sampling effort (in this in-
stance, number of checklists in each grid cell across a species' range) 
and an expected (null) distribution (i.e. uniform spatial distribution of 
sampling effort across a species' range); more details are provided in 
Backstrom (2022). In this paper, we present spatial bias as the inverse 
of the bias of Backstrom (2022), that is 1 − H, so as to keep the same di-
rectional coding as the other two measures (higher is better). As strong 
sampling bias can impede modelling (Johnston et  al., 2020), species 
with weaker checklist spatial bias (i.e. higher scores) are likely better 
suited to a ‘ready-to-go’ approach, whereas species with stronger bias 
(i.e. lower scores) may require more nuanced modelling, or aggressive 
data filtering (e.g. Johnston et al., 2020).

2.3  |  Analysis

We analysed the above three data adequacy metrics across all 598 
species. We analysed the two datasets (eBird and Birdata) both 
independently and combined. We explored (a) values of the three 
data adequacy metrics for the entire dataset; (b) cumulative (year-
on-year) changes in the values of each of the three metrics for the 
period 1980–2022 (i.e. how these metrics change when more data 
are added to the two datasets each year) and (c) annual (year-by-
year) changes in each of the three metrics across the same period.

2.4  |  Modelling

To further explore the factors associated with data adequacy, we 
developed a set of linear models to identify traits that may predict 
various adequacy metrics (Figure  1, panel e). We identified seven 
possible traits (Table 1) and constructed a simple linear model fit to 
each of the three adequacy metrics as follows (N = 3 models):

where �0 is the intercept of data adequacy (one of the three metrics 
defined above, for the entire combined dataset), �1 is the partial re-
gression slope of data adequacy on the species' International Union 
for Conservation of Nature (IUCN) threat status, as measured by the 
Action Plan for Australian Birds 2020 (Garnett & Baker, 2021), �2 is the 
partial regression slope of data adequacy on the species' taxonomic 
uniqueness (a measure of how evolutionarily distinct a species is), as 
defined by Szabo et al. (2012) and presented in Garnett et al. (2015), 
�3 is the partial regression slope of data adequacy on the species' av-
erage body mass, as presented in Garnett et al. (2015), �4 is the partial 
regression slope of data adequacy on the average count of the species, 
calculated directly from the combined observation dataset used in the 
analysis, �5 is the partial regression slope of data adequacy on the spe-
cies' range size, calculated directly from the combined range maps used 
in the analysis, �6 is the partial regression slope of data adequacy on 
the species' modelled density, as presented in Santini et al. (2023), �7 
is the partial regression slope of data adequacy on the average human 
population density (people/km2) across the species' range, calculated 
using data from Australian Bureau of Statistics (2023) and � is the re-
sidual variation in data adequacy for individual species in the dataset.

The six continuous predictor variables were all log-transformed 
to satisfy assumptions of normality and linearity. Model assumptions 
were checked using the package performance (Lüdecke et al., 2021) 
and all modelling and analysis were conducted in R 4.2.0 (R Core 
Team, 2022).

3  |  RESULTS

3.1  |  Analysis

3.1.1  | Mean inventory completeness

Mean inventory completeness values ranged between 0.61 and 
0.96 for the entire combined dataset (mean 0.78, median 0.77; 
Table 2, Figure 2). The species with the lowest MIC values were all 
scarce, desert-dwelling species with fairly large ranges (e.g. Dusky 
Grasswren Amytornis purnelli, Princess Parrot Polytelis alexandrae, 
Grey Honeyeater Conopophila whitei), whereas those with the high-
est scores were all range-restricted island endemics (the highest-
scoring non-island species was the Wet Tropics endemic Chowchilla 

Adequacy = �0+�1× threat status+�2× taxonomic uniqueness

+�3×body mass+�4×average count+�5× range size

+�6×species density+�7×human density+�
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Orthonyx spaldingii at 0.93). MIC values tended to be higher in the 
Birdata dataset than the eBird dataset (Figure 2), although at present 
growth rates this is likely to change by c. 2025 (Figure 3).

Annual MIC values for the combined dataset ranged between an 
average of 0.10 in 1990 and 0.46 in 2000 (Figure 4). Prior to 1998 
and after 2011, the eBird dataset had higher average MIC values, 
whereas between these years the Birdata dataset dominated, par-
ticularly between 1999 and 2001.

3.1.2  |  Total range completeness

Total range completeness values ranged between 0.01 and 1.00 
for the entire combined dataset (mean 0.71, median 0.74; Table 2, 
Figure  2). The species with the lowest TRC values were all either 
very rare, very cryptic or both (e.g. Night Parrot Pezoporus occiden-
talis, Buff-breasted Buttonquail Turnix olivii, Princess Parrot Polytelis 
alexandrae), whereas those with the highest scores were primarily 

island endemics (two range-restricted mainland species, Eungella 
Honeyeater Bolemoreus hindwoodi and Yellow-spotted Honeyeater 
Meliphaga notata, also had TRC values of 1). TRC values tended to be 
higher in the Birdata dataset than in the eBird dataset, although this 
is likely to change by c. 2025 with present growth rates (Figure 3).

Annual TRC values for the combined dataset ranged between an 
average of 0.09 in 1990 and 0.42 in 2022 (Figure 4). Prior to 1998 
and after 2011, the eBird dataset had higher average TRC values, 
whereas between these years the Birdata dataset dominated, par-
ticularly between 1999 and 2001.

3.1.3  |  Checklist spatial bias

Checklist spatial bias values ranged between 0.21 and 1.00 for 
the combined dataset (mean 0.37, median 0.33; Table 2, Figure 2). 
The species with the lowest CSB values (i.e. strongest spatial bias) 
shared few obvious traits, but were often wide-ranging species 

TA B L E  1 The seven traits used in modelling of the three data adequacy metrics.

Trait Definition Prediction Reference

Threat status IUCN Red List category 
(IUCN, 2001). Further details 
in Garnett and Baker (2021)

Higher threat status is associated with poorer data adequacy 
across all metrics. Threatened species typically have smaller 
population sizes (Mace et al., 2008), making them harder to 
find across their range, particularly for threatened species 
with remote ranges

Action plan for 
Australian birds 
2020 (Garnett & 
Baker, 2021)

Taxonomic 
uniqueness

A constructed measure of taxon 
uniqueness. Further details in 
Garnett et al. (2015)

Higher taxonomic uniqueness is associated with better data 
adequacy across all metrics. Taxonomically unique species 
may be favoured by birdwatchers (Steven et al., 2017), 
resulting in distinctive species being disproportionately 
sought out and detected across their ranges

Defined by Szabo 
et al. (2012) 
and presented 
in Garnett 
et al. (2015)

Average body 
mass

Mean body mass (in grams) of 
all birds measured. Further 
details in Garnett et al. (2015)

Higher average body mass is associated with better data 
adequacy across all metrics. Larger birds are over-
represented in unstructured citizen science data (Callaghan, 
Poore, et al., 2021); this may also manifest in semi-structured 
datasets as better data adequacy

Garnett et al. (2015)

Average count Mean count (where reported) of 
observations of the species 
in the combined dataset

Higher average count is associated with better data adequacy 
across all metrics. Species that tend to occur in high numbers 
should be more readily detected across their ranges, resulting 
in better data adequacy scores

Calculated directly 
from the 
combined 
observation 
dataset

Range size Area of combined, gridded and 
clipped distributions of the 
species in the dataset

Larger range size is associated with poorer data adequacy across 
all metrics. Larger ranges are inherently more difficult to 
comprehensively survey (Nandintsetseg et al., 2019) and are 
more likely to have high spatial sampling variation across the 
range

Calculated directly 
from the 
combined 
distribution 
dataset

Species density Modelled species density across 
its whole range. Further 
details in Santini et al. (2023)

Higher species density is associated with better data adequacy 
across all metrics. Less scarce (higher density) species should 
be more readily detected across their ranges, resulting in 
better data adequacy scores

Santini et al. (2023)

Human density Mean human density across the 
species' range

Higher human density is associated with better data adequacy 
across all metrics. Citizen science survey effort is strongly 
associated with population density (e.g. Botts et al., 2011); 
higher survey effort should yield more comprehensive 
coverage and more even effort

Calculated using 
data from 
Australian 
Bureau of 
Statistics (2023)

Note: A definition, reference and predicted relationship between trait and data adequacy is provided for each.
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with distributions that straddled inland Australia, where survey 
effort is generally lower, and the densely populated east coastal 
fringe, where survey effort is generally higher (e.g. Pheasant 
Coucal Centropus phasianinus, Pied Butcherbird Cracticus nigrogula-
ris, Chestnut-breasted Mannikin Lonchura castaneothorax). Species 
with the highest scores (i.e. weakest spatial bias) were all island 
endemics (the highest-scoring non-island species was Eungella 
Honeyeater Bolemorus hindwoodi at 0.99). Spatial bias tended to be 
stronger (lower CSB score) in the eBird dataset for most species 
(Figures 2 and 3).

Annual CSB values for the combined dataset ranged between an 
average of 0.25 in 1993 and 0.46 in 2000 (Figure 4). Prior to 1998, 
spatial bias was typically worse (lower score) in the Birdata dataset; 
since then, it has been typically worse in the eBird dataset with the 
exception of 2020, when both datasets had approximately equal 
spatial bias (c. 0.30).

3.2  |  Modelling

We tested the relationship between seven different species traits 
and the three measures of adequacy, fitting models for 561 species. 
Thirty-seven species had missing values that could not be imputed 
for at least one of the seven predictor variables and therefore were 
not included. The majority of missing values (35/37 species) came 
from the density dataset (Santini et  al.,  2023), with the remain-
ing missing values coming from the body mass dataset (Garnett 
et al., 2015). For the most part, these 37 species did not share many 
common traits, although several poorly known species (e.g. Buff-
breasted Buttonquail T. olivii, Coxen's Fig-Parrot Cyclopsitta coxeni) 
were included in this group; a full list of all 37 species with missing 
values is provided in Appendix S3.

The fitted models mostly had good explanatory power, with 
R2 values ranging from .14 for total range completeness (adjusted 
R2 = .14, F10,550 = 9.902, p = 2.5 × 10

−15) to .72 for checklist spatial 
bias (adjusted R2 = .72, F10,550 = 142.9, p < 2.2 × 10

−16) and .79 for 
mean inventory completeness (adjusted R2 = .79, F10,550 = 211.2, 
p < 2.2 × 10−16). Effect sizes for most coefficients tended to be 
fairly small, and about half (16/30) were non-significant (Figure 5). 
Across the adequacy metrics, range size was a statistically sig-
nificant predictor. Species with larger range sizes tended to 
have lower mean inventory completeness (p < 2.2 × 10−16), total 
range completeness (p < 2.2 × 10−16) and checklist spatial bias 
(p < 2.2 × 10−16). Similarly, average human population density was 
a statistically significant predictor across all three metrics, with 
species with more densely populated ranges typically having 
higher mean inventory completeness (p < 2.2 × 10−16) and total 
range completeness (p < 2.2 × 10−16), but lower checklist spatial 
bias (p = 1.9 × 10−7). Conversely, species' taxonomic uniqueness 
was not a statistically significant predictor for any metric. The re-
lationships between the other coefficients and the three metrics 
were generally more mixed. Complete results for all model coeffi-
cients are presented in Figure 5.M
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4  |  DISCUSSION

We used three metrics of adequacy to explore the monitoring capac-
ity of citizen science data from two major Australian programmes, 
eBird and Birdata. Data adequacy—as we have defined it—is a broadly 
applicable and repeatable way of assessing the potential utility of a 
dataset prior to conducting any subsequent analyses, allowing an-
alysts and end users to identify and prioritise species and regions 
that will benefit most from further monitoring efforts. We found 
that mean inventory completeness and total range completeness are 

both higher in the Birdata dataset than in the eBird dataset for most 
species, despite the significantly greater volume of data in the eBird 
dataset. This paradoxical result is likely driven by the stronger spatial 
bias (lower checklist spatial bias scores) in the eBird dataset, which 
has relatively lower survey effort across much of remote Australia, 
but much higher effort in more densely populated regions. As a con-
sequence of this, citizen science data coverage for many Australian 
bird species is still incomplete, especially those whose ranges span 
the arid zone. However, mean inventory completeness and total 
range completeness are both steadily increasing year-by-year for 

F I G U R E  2 Violin plots of the distributions of the three data adequacy metrics calculated across the entire dataset (598 species) for the 
eBird (green), Birdata (blue) and combined (black) datasets.

F I G U R E  3 Cumulative (year-on-year) change of the three data adequacy metrics calculated for the eBird (green), Birdata (blue) and 
combined (black) datasets between 1990 and 2002. Solid lines are the median value across all species in each year; shaded ribbons denote 
the 5th–95th percentile range of values for all 598 species.
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most species, primarily due to the continuing rapid expansion of 
eBird use by the birdwatching community in the country.

Two of our metrics (mean inventory completeness and total range 
completeness) are alike in that, cumulatively (year-on-year), they can 
only increase (and have mostly also increased year-by-year, as noted 

above). However, the third metric we present (checklist spatial bias) 
is not constrained in the same way and has worsened across both 
datasets in recent years (Figures 3 and 4). This has implications for 
analysts wishing to use citizen science data, as spatial bias needs to 
be considered and controlled for in any analyses since uncontrolled 

F I G U R E  4 Annual (year-by-year) change of the three data adequacy metrics calculated for the eBird (green), Birdata (blue) and combined 
(black) datasets between 1990 and 2002. Solid lines are the median value across all species in each year; shaded ribbons denote the 5th 
95th percentile range of values for all 598 species.

F I G U R E  5 Coefficient estimates 
(effect sizes) and 95% confidence 
intervals for the three models (one per 
data adequacy metric). Blue = Mean 
Inventory Completeness; Green = Total 
Range Completeness; Red = Checklist 
Spatial Bias. A negative coefficient means 
decreased data adequacy (as measured 
by the specific metric) as the value of 
the predictor variable increases, or in 
comparison to the reference state of the 
predictor variable (CR for Threat Status). 
NB: the six continuous predictor variables 
were all log-transformed to satisfy 
assumptions of normality and linearity. p-
value cut-offs: p < .001: ***;  .001 ≤ p < .01: 
**; .01 ≤ p < .05: *; p ≥ .05: ns.
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spatial biases can lead to unreliable or incorrect model inference 
(Backstrom,  2022; Johnston et  al.,  2020). Fortunately, the effects 
of increased spatial bias (i.e. worsening checklist spatial bias) may 
be mitigated by the exponential growth in data volume (i.e. increas-
ing mean inventory completeness and total range completeness), as 
larger data volumes across species' ranges allow analysts to use fil-
tering and subsampling methods that account for these worsening bi-
ases while retaining a sufficiently large sample size (see e.g. Johnston 
et al., 2021). Furthermore, spatial bias in the eBird dataset may be 
stabilising, likely reflective of consistent observer practices over time, 
with growth now driven mainly by new users rather than increased 
survey effort per user. Such insights provide valuable direction for 
analysts wishing to use these datasets and are enhanced by the syn-
ergy achieved by exploring multiple metrics simultaneously.

The temporal context provided in our analysis also highlights the 
impact that guided approaches to citizen science can have on data 
adequacy and overall dataset quality (Callaghan, Poore, et al., 2019; 
Callaghan, Rowley, et al., 2019; Callaghan, Watson, et al., 2021). This 
is best demonstrated by the considerable increase in all three ade-
quacy metrics in the Birdata dataset during the period 1999–2001 
(Figure  4), corresponding with the New Atlas of Australian Birds 
project run by Birdlife Australia (Barrett et al., 2003). During this pe-
riod, survey effort in remote Australia was considerably greater than 
any period since, resulting in meaningfully increased data adequacy 
scores across all three metrics. Similar guided approaches to target 
poorly represented species or regions could be implemented in ei-
ther eBird or Birdata in the future, with their effectiveness assessed 
simply by repeating the analyses presented here. Indeed, since our 
approach is not limited to any region or taxonomic group, it may be 
used to broadly monitor the state of knowledge for any group for 
which there have been citizen science efforts, targeted or otherwise.

Our methods thus allow for species to be classified according 
to how suitable available citizen science data currently are, for any 
given application. For some species, currently available citizen sci-
ence data may be ‘ready to go’, allowing for populations of these 
species to be modelled and tracked without significant further in-
field investment, especially if other data sources (e.g. pre-existing 
structured surveys) are integrated into models. However, for many 
other species, particularly those that are rare or cryptic, or those 
with large or remote ranges, current citizen science data are in-
sufficient, and in many cases, broad-scale citizen science projects 
like eBird and Birdata are unlikely to ever be sufficient unless more 
targeted approaches are employed. The potential of such targeted 
approaches is readily demonstrated in our analyses by the consid-
erable increase in all three metrics in the Birdata dataset during the 
period corresponding with the New Atlas of Australian Birds project. 
Finally, for especially data-poor species where targeted citizen sci-
ence approaches are either unavailable or unsuccessful, more formal 
monitoring methods will likely be necessary to fill in the gaps.

In addition to providing values for each of the metrics we pres-
ent, we also explored the relationship between each of the three 
metrics and several species-specific traits (Table  1, Figure  5). We 
found various patterns in the relationships between species' traits 

and the three adequacy metrics we assess. These include the un-
surprising finding that a species' range size has strong implications 
for how well-sampled a species is, indicating that species with large 
range sizes are inherently more difficult to fully sample and quan-
tify than those with small range sizes, supporting other research 
(Nandintsetseg et al., 2019). Similarly, we found a positive relation-
ship between human population density and two of our adequacy 
metrics (mean inventory completeness and total range complete-
ness), further supporting the body of literature that has found a 
strong bias in citizen science data towards human settlements (e.g. 
Botts et  al.,  2011). This indicates that more ‘remote’ species are 
most likely to need prioritisation in biodiversity research and tar-
geted monitoring efforts. Surprisingly, taxonomic uniqueness was 
not strongly correlated with any of our three metrics.

Although we are satisfied with the robustness of our analyses, we 
do note a small number of limitations. One issue is the spatial grain size 
used. The sizes of terrestrial Australian bird distributions span more 
than five orders of magnitude, ranging from highly range-restricted 
island endemics to species found across the entire continent; even 
among mainland taxa, the range is more than two orders of magnitude 
(the Eungella Honeyeater having the smallest range, being found across 
just c. 0.26% of the continent). In some instances, small spatial grain 
may be important, particularly if the desired downstream analyses or 
management applications require a similarly small grain. However, the 
overall trends we observe (increasing mean inventory completeness 
and total range completeness, but worsening checklist Spatial Bias) are 
consistent across a range of meaningful grain sizes (0.2–2.0 degrees; 
Figures S1–S4). As such, while the absolute values of the three metrics 
tend to decrease with increasingly fine-scale grain sizes, this is not an 
issue as the relative relationships remain intact.

A second limitation to note is that while we present three metrics 
of data adequacy, these are not necessarily a complete inventory of 
all possible ways to quantify adequacy (we do not, e.g. attempt to 
explicitly quantify adequacy in the temporal context), nor are the 
three presented necessarily essential. Depending on the intended 
research question(s), some metrics may be more useful than others. 
The commonality between all data adequacy metrics, however, is 
their ability to provide additional context when exploring a biodi-
versity dataset, and in particular their ability to identify gaps—parts 
of the dataset with poor adequacy—that may need to be addressed 
in any downstream applications, for example, by integrating citizen 
science data with other sources.

By developing and presenting methods to quantify the adequacy 
of citizen science datasets for biodiversity monitoring, we show it is 
possible to identify species-specific biases and gaps. Conservation 
efforts are typically most successful when done at the species level 
(Ward et al., 2020), and so taxonomically precise assessments of data 
adequacy are important in deriving appropriate conclusions from 
observational datasets that can be directly applied to conservation 
outcomes. Species-specific measures of data adequacy—a key area of 
novelty in our analysis—allow for species to be classified or prioritised 
according to an analyst's specific needs and are especially critical in 
any conservation-minded assessment of citizen science data.
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